These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 37837900)
1. Hybrid osmotically assisted reverse osmosis and reverse osmosis (OARO-RO) process for minimal liquid discharge of high strength nitrogenous wastewater and enrichment of ammoniacal nitrogen. Gonzales RR; Nakagawa K; Kumagai K; Hasegawa S; Matsuoka A; Li Z; Mai Z; Yoshioka T; Hori T; Matsuyama H Water Res; 2023 Nov; 246():120716. PubMed ID: 37837900 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Energy Consumption of Osmotically Assisted Reverse Osmosis and Low-Salt-Rejection Reverse Osmosis for Brine Management. Wang Z; Feng D; Chen Y; He D; Elimelech M Environ Sci Technol; 2021 Aug; 55(15):10714-10723. PubMed ID: 34269563 [TBL] [Abstract][Full Text] [Related]
3. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery. Valladares Linares R; Li Z; Yangali-Quintanilla V; Ghaffour N; Amy G; Leiknes T; Vrouwenvelder JS Water Res; 2016 Jan; 88():225-234. PubMed ID: 26512800 [TBL] [Abstract][Full Text] [Related]
4. Theoretical and Experimental Analysis of Osmotically Assisted Reverse Osmosis for Minimum Liquid Discharge. Ju J; Lee S; Kim Y; Cho H; Lee S Membranes (Basel); 2023 Sep; 13(10):. PubMed ID: 37887986 [TBL] [Abstract][Full Text] [Related]
5. Osmotically assisted reverse osmosis, simulated to achieve high solute concentrations, at low energy consumption. H M Beigi B; Gadkari S; Sadhukhan J Sci Rep; 2022 Aug; 12(1):13741. PubMed ID: 35962008 [TBL] [Abstract][Full Text] [Related]
6. Performance of a pilot-scale reverse osmosis process for water recovery from biologically-treated textile wastewater. Sahinkaya E; Tuncman S; Koc I; Guner AR; Ciftci S; Aygun A; Sengul S J Environ Manage; 2019 Nov; 249():109382. PubMed ID: 31421481 [TBL] [Abstract][Full Text] [Related]
7. High performance RO membranes for desalination and wastewater reclamation and their operation results. Henmi M; Fusaoka Y; Tomioka H; Kurihara M Water Sci Technol; 2010; 62(9):2134-40. PubMed ID: 21045342 [TBL] [Abstract][Full Text] [Related]
8. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. Wang H; Yang J; Zhang H; Zhao J; Liu H; Wang J; Li G; Liang H Sci Total Environ; 2024 Jan; 908():168277. PubMed ID: 37939956 [TBL] [Abstract][Full Text] [Related]
9. Low cost reclamation using the Advanced Integrated Wastewater Pond Systems Technology and reverse osmosis. Downing JB; Bracco E; Green FB; Ku AY; Lundquist TJ; Zubieta IX; Oswald WJ Water Sci Technol; 2002; 45(1):117-25. PubMed ID: 11833725 [TBL] [Abstract][Full Text] [Related]
10. Design considerations for wastewater treatment by reverse osmosis. Bartels CR; Wilf M; Andes K; Iong J Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010 [TBL] [Abstract][Full Text] [Related]
11. Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater. Sahinkaya E; Sahin A; Yurtsever A; Kitis M J Environ Manage; 2018 Sep; 222():420-427. PubMed ID: 29894945 [TBL] [Abstract][Full Text] [Related]
12. Exploring the Limitations of Osmotically Assisted Reverse Osmosis: Membrane Fouling and the Limiting Flux. Peters CD; Li D; Mo Z; Hankins NP; She Q Environ Sci Technol; 2022 May; 56(10):6678-6688. PubMed ID: 35475365 [TBL] [Abstract][Full Text] [Related]
13. Increasing RO efficiency by chemical-free ion-exchange and Donnan dialysis: Principles and practical implications. Vanoppen M; Stoffels G; Demuytere C; Bleyaert W; Verliefde AR Water Res; 2015 Sep; 80():59-70. PubMed ID: 25996753 [TBL] [Abstract][Full Text] [Related]
14. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Zhang S; Wang P; Fu X; Chung TS Water Res; 2014 Apr; 52():112-21. PubMed ID: 24463175 [TBL] [Abstract][Full Text] [Related]
15. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment. Pradhan S; Fan L; Roddick FA Chemosphere; 2015 Oct; 136():198-203. PubMed ID: 26002159 [TBL] [Abstract][Full Text] [Related]
16. Integrating reverse osmosis and forward osmosis (RO-FO) for printing and dyeing wastewater treatment: impact of FO on water recovery. Wang R; Li J; Xu C; Xu X; Tang F; Huang M Environ Sci Pollut Res Int; 2023 Aug; 30(40):92495-92506. PubMed ID: 37491487 [TBL] [Abstract][Full Text] [Related]
17. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Wang Z; Deshmukh A; Du Y; Elimelech M Water Res; 2020 Mar; 170():115317. PubMed ID: 31786394 [TBL] [Abstract][Full Text] [Related]
18. A novel single-stage ceramic membrane moving bed biofilm reactor coupled with reverse osmosis for reclamation of municipal wastewater to NEWater-like product water. Sun H; Liu H; Zhang M; Liu Y Chemosphere; 2021 Apr; 268():128836. PubMed ID: 33168286 [TBL] [Abstract][Full Text] [Related]
19. Increasing net water recovery of reverse osmosis with membrane distillation using natural thermal differentials between brine and co-located water sources: Impacts at large reclamation facilities. Alrehaili O; Perreault F; Sinha S; Westerhoff P Water Res; 2020 Oct; 184():116134. PubMed ID: 32810769 [TBL] [Abstract][Full Text] [Related]
20. Necessity of direct energy and ammonium recovery for carbon neutral municipal wastewater reclamation in an innovative anaerobic MBR-biochar adsorption-reverse osmosis process. Zhang X; Gu J; Liu Y Water Res; 2022 Mar; 211():118058. PubMed ID: 35042076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]