These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 37838027)
1. Modulation of metal transporters, oxidative stress and cell abnormalities by synergistic application of silicon and titanium oxide nanoparticles: A strategy for cadmium tolerance in rice. Lai M; Ghouri F; Sarwar S; Alomrani SO; Riaz M; Haider FU; Liu J; Imran M; Ali S; Liu X; Shahid MQ Chemosphere; 2023 Dec; 345():140439. PubMed ID: 37838027 [TBL] [Abstract][Full Text] [Related]
2. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Faizan M; Bhat JA; Hessini K; Yu F; Ahmad P Ecotoxicol Environ Saf; 2021 Sep; 220():112401. PubMed ID: 34118747 [TBL] [Abstract][Full Text] [Related]
3. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Wang S; Wang F; Gao S Environ Sci Pollut Res Int; 2015 Feb; 22(4):2837-45. PubMed ID: 25217281 [TBL] [Abstract][Full Text] [Related]
4. Silicon and iron nanoparticles protect rice against lead (Pb) stress by improving oxidative tolerance and minimizing Pb uptake. Ghouri F; Sarwar S; Sun L; Riaz M; Haider FU; Ashraf H; Lai M; Imran M; Liu J; Ali S; Liu X; Shahid MQ Sci Rep; 2024 Mar; 14(1):5986. PubMed ID: 38472251 [TBL] [Abstract][Full Text] [Related]
5. Jointed toxicity of TiO Ji Y; Zhou Y; Ma C; Feng Y; Hao Y; Rui Y; Wu W; Gui X; Le VN; Han Y; Wang Y; Xing B; Liu L; Cao W Plant Physiol Biochem; 2017 Jan; 110():82-93. PubMed ID: 27193349 [TBL] [Abstract][Full Text] [Related]
6. Effects of silicon and titanium dioxide nanoparticles on arsenic accumulation, phytochelatin metabolism, and antioxidant system by rice under arsenic toxicity. Kiany T; Pishkar L; Sartipnia N; Iranbakhsh A; Barzin G Environ Sci Pollut Res Int; 2022 May; 29(23):34725-34737. PubMed ID: 35041168 [TBL] [Abstract][Full Text] [Related]
8. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. He J; Ren Y; Chen X; Chen H Ecotoxicol Environ Saf; 2014 Oct; 108():114-9. PubMed ID: 25046853 [TBL] [Abstract][Full Text] [Related]
9. Unraveling the influence of TiO Mohammadi H; Kazemi Z; Aghaee A; Hazrati S; Golzari Dehno R; Ghorbanpour M Sci Rep; 2023 Dec; 13(1):22280. PubMed ID: 38097718 [TBL] [Abstract][Full Text] [Related]
10. Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. Chen D; Chen D; Xue R; Long J; Lin X; Lin Y; Jia L; Zeng R; Song Y J Hazard Mater; 2019 Apr; 367():447-455. PubMed ID: 30611037 [TBL] [Abstract][Full Text] [Related]
11. Astaxanthin and its gold nanoparticles mitigate cadmium toxicity in rice by inhibiting cadmium translocation and uptake. Dai S; Wang B; Song Y; Xie Z; Li C; Li S; Huang Y; Jiang M Sci Total Environ; 2021 Sep; 786():147496. PubMed ID: 33984703 [TBL] [Abstract][Full Text] [Related]
12. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Srivastava RK; Pandey P; Rajpoot R; Rani A; Dubey RS Protoplasma; 2014 Sep; 251(5):1047-65. PubMed ID: 24482190 [TBL] [Abstract][Full Text] [Related]
13. Silicon nanoparticles alleviate cadmium toxicity in rice (Oryza sativa L.) by modulating the nutritional profile and triggering stress-responsive genetic mechanisms. Jalil S; Nazir MM; Al-Huqail AA; Ali B; Al-Qthanin RN; Asad MAU; Eweda MA; Zulfiqar F; Onursal N; Masood HA; Yong JWH; Jin X Ecotoxicol Environ Saf; 2023 Dec; 268():115699. PubMed ID: 37979353 [TBL] [Abstract][Full Text] [Related]
14. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Hussain A; Rizwan M; Ali Q; Ali S Environ Sci Pollut Res Int; 2019 Mar; 26(8):7579-7588. PubMed ID: 30661166 [TBL] [Abstract][Full Text] [Related]
15. Oryza glumaepatula and calcium oxide nanoparticles enhanced Cr stress tolerance by maintaining antioxidant defense, chlorophyll and gene expression levels in rice. Ashraf H; Ghouri F; Zhong M; Cheema SA; Haider FU; Sun L; Ali S; Alshehri MA; Fu X; Shahid MQ J Environ Manage; 2024 Sep; 368():122239. PubMed ID: 39182380 [TBL] [Abstract][Full Text] [Related]
16. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Pereira AS; Dorneles AOS; Bernardy K; Sasso VM; Bernardy D; Possebom G; Rossato LV; Dressler VL; Tabaldi LA Environ Sci Pollut Res Int; 2018 Jul; 25(19):18548-18558. PubMed ID: 29700750 [TBL] [Abstract][Full Text] [Related]
17. Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana. Majumdar S; Sachdev S; Kundu R Ecotoxicol Environ Saf; 2020 Dec; 205():111167. PubMed ID: 32827967 [TBL] [Abstract][Full Text] [Related]
18. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Li Y; Liang L; Li W; Ashraf U; Ma L; Tang X; Pan S; Tian H; Mo Z J Nanobiotechnology; 2021 Mar; 19(1):75. PubMed ID: 33731120 [TBL] [Abstract][Full Text] [Related]
19. Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO Ghouri F; Shahid MJ; Zhong M; Zia MA; Alomrani SO; Liu J; Sun L; Ali S; Liu X; Shahid MQ Sci Total Environ; 2024 Feb; 911():168709. PubMed ID: 37992838 [TBL] [Abstract][Full Text] [Related]
20. Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.). Wan Y; Wang K; Liu Z; Yu Y; Wang Q; Li H Environ Sci Pollut Res Int; 2019 Jun; 26(16):16220-16228. PubMed ID: 30972675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]