These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37838034)
1. Occurrence state of fluoride in barite ore and the complexation leaching process. Fan ZY; Wu YY; Nie DP; Zhang Y; Zhou L Chemosphere; 2023 Dec; 344():140437. PubMed ID: 37838034 [TBL] [Abstract][Full Text] [Related]
2. Determination of carbonate content in barite ore by headspace gas chromatography. Liu XY; Li W; Yu K; Fan ZY; Luo B; Nie DP; Luo YC; Dai Y; Wang H J Sep Sci; 2023 Jan; 46(1):e2200656. PubMed ID: 36285382 [TBL] [Abstract][Full Text] [Related]
3. Determination of barium sulfate in barite ore by phase conversion-partial pressure-corrected headspace gas chromatography. Fan ZY; Zhao JM; Liu XY; Luo B; Zhou L; Nie DP; Wu YY; Kang ZH; Tao WL J Chromatogr A; 2022 Nov; 1683():463547. PubMed ID: 36228572 [TBL] [Abstract][Full Text] [Related]
4. Water Leaching Kinetics of Boron from the Alkali-Activated Ludwigite Ore. Liang B; Hu H; Xiao B; Lu Z; Yuan W; Huang Z Molecules; 2024 Feb; 29(4):. PubMed ID: 38398578 [TBL] [Abstract][Full Text] [Related]
5. Nonoxidative Microwave Radiation Roasting of Bastnasite Concentrate and Kinetics of Hydrochloric Acid Leaching Process. Zheng Q; Xu Y; Cui L; Ma S; Guan W ACS Omega; 2020 Oct; 5(41):26710-26719. PubMed ID: 33110997 [TBL] [Abstract][Full Text] [Related]
6. Mechanism for leaching of fluoride ions from carbon dross generated in high-temperature and low-lithium aluminum electrolytic systems. Huo Q; Li R; Chen M; Zhou R; Li B; Chen C; Liu X; Xiao Z; Qin G; Huang J; Long T J Hazard Mater; 2024 May; 469():133838. PubMed ID: 38430589 [TBL] [Abstract][Full Text] [Related]
7. Improvement of the Stability of IO Tokunaga K; Tanaka K; Takahashi Y; Kozai N Environ Sci Technol; 2023 Feb; 57(8):3166-3175. PubMed ID: 36780547 [TBL] [Abstract][Full Text] [Related]
8. Microwave hydrothermal sulfuric acid leaching of spent cathode carbon from aluminum electrolysis for high efficiency removal of insoluble calcium fluoride. Xu Z; Xu L; Wei Q; Shen S; Liu J; Zhu Y Waste Manag; 2024 Apr; 179():110-119. PubMed ID: 38471249 [TBL] [Abstract][Full Text] [Related]
9. Recovery of aluminum oxide and iron oxide from aluminum electrolysis iron-rich cover material and preparation of aluminum fluoride. Lan J; Yan H; Liu Z; Ma W Environ Sci Pollut Res Int; 2024 Apr; 31(18):27388-27402. PubMed ID: 38512573 [TBL] [Abstract][Full Text] [Related]
10. Effective Removal of Selenite and Selenate Ions from Aqueous Solution by Barite. Tokunaga K; Takahashi Y Environ Sci Technol; 2017 Aug; 51(16):9194-9201. PubMed ID: 28686015 [TBL] [Abstract][Full Text] [Related]
11. Assessment of the solubility and bioaccessibility of barium and aluminum in soils affected by mine dust deposition. Shock SS; Bessinger BA; Lowney YW; Clark JL Environ Sci Technol; 2007 Jul; 41(13):4813-20. PubMed ID: 17695934 [TBL] [Abstract][Full Text] [Related]
12. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity. Giordano TH Geochem Trans; 2002; 3():56. PubMed ID: 35412757 [TBL] [Abstract][Full Text] [Related]
13. Barite as an industrial mineral in Nigeria: occurrence, utilization, challenges and future prospects. Ebunu AI; Olanrewaju YA; Ogolo O; Adetunji AR; Onwualu AP Heliyon; 2021 Jun; 7(6):e07365. PubMed ID: 34195451 [TBL] [Abstract][Full Text] [Related]
14. Leaching Kinetics of Vanadium from Calcium-Roasting High-Chromium Vanadium Slag Enhanced by Electric Field. Peng H; Guo J; Zhang X ACS Omega; 2020 Jul; 5(28):17664-17671. PubMed ID: 32715252 [TBL] [Abstract][Full Text] [Related]
15. Massive Accumulation of Strontium and Barium in Diplonemid Protists. Pilátová J; Tashyreva D; Týč J; Vancová M; Bokhari SNH; Skoupý R; Klementová M; Küpper H; Mojzeš P; Lukeš J mBio; 2023 Feb; 14(1):e0327922. PubMed ID: 36645306 [TBL] [Abstract][Full Text] [Related]
16. Vertical distribution and occurrence state of the residual leaching agent (ammonium sulfate) in the weathered crust elution-deposited rare earth ore. Huang S; Li Z; Yu J; Feng J; Hou H; Chi R J Environ Manage; 2021 Dec; 299():113642. PubMed ID: 34467858 [TBL] [Abstract][Full Text] [Related]
17. Leaching of Valuable Elements from the Waste Chromite Ore Processing Residue: A Kinetic Analysis. Zhang X; Li G; Wu J; Xiong N; Quan X ACS Omega; 2020 Aug; 5(31):19633-19638. PubMed ID: 32803058 [TBL] [Abstract][Full Text] [Related]
18. The Leaching Behavior of Potassium Extraction from Polyhalite Ore in Water. Ma F; Zeng Y; Yu X; Chen K; Ren S ACS Omega; 2023 Oct; 8(40):37162-37175. PubMed ID: 37841122 [TBL] [Abstract][Full Text] [Related]
19. Leaching behavior and environmental safety evaluation of fluorine ions from shotcrete with high-fluorine alkali-free liquid accelerator. Yang R; He T Environ Sci Pollut Res Int; 2022 Feb; 29(8):11267-11280. PubMed ID: 34533751 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of leaching characteristic and kinetic study of lithium from lithium aluminum silicate glass-ceramics by NaOH. Lee D; Joo SH; Shin DJ; Shin SM J Environ Sci (China); 2021 Sep; 107():98-110. PubMed ID: 34412791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]