These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37838111)
1. Multi-characteristic tannic acid-reinforced polyacrylamide/sodium carboxymethyl cellulose ionic hydrogel strain sensor for human-machine interaction. Li W; Li SM; Kang MC; Xiong X; Wang P; Tao LQ Int J Biol Macromol; 2024 Jan; 254(Pt 2):127434. PubMed ID: 37838111 [TBL] [Abstract][Full Text] [Related]
2. Wide-humidity, anti-freezing and stretchable multifunctional conductive carboxymethyl cellulose-based hydrogels for flexible wearable strain sensors and arrays. Cui L; Wang W; Zheng J; Hu C; Zhu Z; Liu B Carbohydr Polym; 2024 Oct; 342():122406. PubMed ID: 39048200 [TBL] [Abstract][Full Text] [Related]
3. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. Lei T; Pan J; Wang N; Xia Z; Zhang Q; Fan J; Tao L; Shou W; Gao Y Mater Horiz; 2024 Mar; 11(5):1234-1250. PubMed ID: 38131412 [TBL] [Abstract][Full Text] [Related]
4. Air-Writing Recognition Enabled by a Flexible Dual-Network Hydrogel-Based Sensor and Machine Learning. Boateng D; Li X; Wu W; Yang A; Gul A; Kang Y; Yang L; Liu J; Zeng H; Zhang H; Han L ACS Appl Mater Interfaces; 2024 Oct; 16(40):54555-54565. PubMed ID: 39319516 [TBL] [Abstract][Full Text] [Related]
5. Gradient Diffusion Anisotropic Carboxymethyl Cellulose Hydrogels for Strain Sensors. Ouyang K; Zhuang J; Chen C; Wang X; Xu M; Xu Z Biomacromolecules; 2021 Dec; 22(12):5033-5041. PubMed ID: 34813283 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional, Self-Adhesive MXene-Based Hydrogel Flexible Strain Sensors for Hand-Written Digit Recognition with Assistance of Deep Learning. Zhang H; Zhang D; Luan H; Wang Z; Zhang P; Xi G; Ji X Langmuir; 2023 Nov; 39(45):16199-16207. PubMed ID: 37906584 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial Dual Network Hydrogels for Sensing and Human Health Monitoring. Lei H; Zhao J; Ma X; Li H; Fan D Adv Healthc Mater; 2021 Nov; 10(21):e2101089. PubMed ID: 34453781 [TBL] [Abstract][Full Text] [Related]
9. Ultrastretchable, Self-Healing Conductive Hydrogel-Based Triboelectric Nanogenerators for Human-Computer Interaction. Zhang H; Zhang D; Wang Z; Xi G; Mao R; Ma Y; Wang D; Tang M; Xu Z; Luan H ACS Appl Mater Interfaces; 2023 Feb; 15(4):5128-5138. PubMed ID: 36658100 [TBL] [Abstract][Full Text] [Related]
10. Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring. Li X; Ma Y; Li D; Lu S; Li Y; Li Z Int J Biol Macromol; 2022 Dec; 223(Pt A):1530-1538. PubMed ID: 36402382 [TBL] [Abstract][Full Text] [Related]
11. Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors. Li Y; Gong Q; Han L; Liu X; Yang Y; Chen C; Qian C; Han Q Carbohydr Polym; 2022 Dec; 298():120060. PubMed ID: 36241262 [TBL] [Abstract][Full Text] [Related]
12. Construction of strong and tough carboxymethyl cellulose-based oriented hydrogels by phase separation. Zhong L; Dong Z; Liu Y; Chen C; Xu Z Int J Biol Macromol; 2023 Jan; 225():79-89. PubMed ID: 36460246 [TBL] [Abstract][Full Text] [Related]
13. Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Li N; Chen G; Chen W; Huang J; Tian J; Wan X; He M; Zhang H Carbohydr Polym; 2017 Dec; 178():159-165. PubMed ID: 29050581 [TBL] [Abstract][Full Text] [Related]
14. Ultrastretchable, Antifreezing, and High-Performance Strain Sensor Based on a Muscle-Inspired Anisotropic Conductive Hydrogel for Human Motion Monitoring and Wireless Transmission. Chen L; Chang X; Chen J; Zhu Y ACS Appl Mater Interfaces; 2022 Sep; 14(38):43833-43843. PubMed ID: 36112731 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix. Zhang W; Wen J; Yang J; Li M; Peng F; Ma M; Bian J Int J Biol Macromol; 2022 Dec; 223(Pt A):1-10. PubMed ID: 36336151 [TBL] [Abstract][Full Text] [Related]
16. Muscle-inspired anisotropic carboxymethyl cellulose-based double-network conductive hydrogels for flexible strain sensors. Zhong L; Zhang Y; Liu F; Wang L; Feng Q; Chen C; Xu Z Int J Biol Macromol; 2023 Sep; 248():125973. PubMed ID: 37495000 [TBL] [Abstract][Full Text] [Related]
17. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors. Qin Z; Liu S; Bai J; Yin J; Li N; Jiao T Int J Biol Macromol; 2022 Nov; 220():90-96. PubMed ID: 35970366 [TBL] [Abstract][Full Text] [Related]
18. Self-Adhesive, Anti-Freezing MXene-Based Hydrogel Strain Sensor for Motion Monitoring and Handwriting Recognition with Deep Learning. Ma Y; Zhang D; Wang Z; Zhang H; Xia H; Mao R; Cai H; Luan H ACS Appl Mater Interfaces; 2023 Jun; 15(24):29413-29424. PubMed ID: 37280727 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured ionic hydrogel with integrated conductivity, stretchability and thermal responsiveness for a high-performance strain and temperature sensor. Pang Q; Wu K; Jiang Z; Yang F; Shi Z; Gao H; Zhang C; Hou R; Zhu Y Biomater Sci; 2023 May; 11(10):3603-3615. PubMed ID: 37009640 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of versatile polyvinyl alcohol and carboxymethyl cellulose-based hydrogels for information hiding and flexible sensors: Heat-induced adjustable stiffness and transparency. Sun Y; Shi F; Tian R; Zhao X; Li Q; Song C; Du Y; He X; Fu J Int J Biol Macromol; 2023 Dec; 253(Pt 3):126950. PubMed ID: 37729995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]