These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37838111)
21. Hydroxypropyl methyl cellulose reinforced conducting polymer hydrogels with ultra-stretchability and low hysteresis as highly sensitive strain sensors for wearable health monitoring. Xu L; Liu S; Zhu L; Liu Y; Li N; Shi X; Jiao T; Qin Z Int J Biol Macromol; 2023 May; 236():123956. PubMed ID: 36898462 [TBL] [Abstract][Full Text] [Related]
22. Tannic acid-coated cellulose nanocrystal-reinforced transparent multifunctional hydrogels with UV-filtering for wearable flexible sensors. Cui S; Zhang S; Zhang F; Lin R; Tang C; Jing X Carbohydr Polym; 2024 Jan; 323():121385. PubMed ID: 37940280 [TBL] [Abstract][Full Text] [Related]
23. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Hu J; Wu Y; Yang Q; Zhou Q; Hui L; Liu Z; Xu F; Ding D Carbohydr Polym; 2022 Jan; 275():118697. PubMed ID: 34742424 [TBL] [Abstract][Full Text] [Related]
24. Carboxymethylcellulose reinforced, double-network hydrogel-based strain sensor with superior sensing stability for long-term monitoring. Zhan W; Zhang Q; Zhang C; Yang Z; Peng N; Jiang Z; Liu M; Zhang X Int J Biol Macromol; 2023 Jun; 241():124536. PubMed ID: 37085065 [TBL] [Abstract][Full Text] [Related]
25. Wireless Sensor System Based on Organohydrogel Ionic Skin for Physiological Activity Monitoring. Yang C; Ji C; Guo F; Mi H; Wang Y; Qiu J ACS Appl Mater Interfaces; 2024 May; 16(19):25181-25193. PubMed ID: 38698676 [TBL] [Abstract][Full Text] [Related]
26. Gesture Recognition System Using Reduced Graphene Oxide-Enhanced Hydrogel Strain Sensors for Rehabilitation Training. Li W; Wu S; Li S; Zhong X; Zhang X; Qiao H; Kang M; Chen J; Wang P; Tao LQ ACS Appl Mater Interfaces; 2023 Sep; 15(38):45106-45115. PubMed ID: 37699573 [TBL] [Abstract][Full Text] [Related]
27. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. Hao S; Shao C; Meng L; Cui C; Xu F; Yang J ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440 [TBL] [Abstract][Full Text] [Related]
28. Highly Sensitive and Robust Polysaccharide-Based Composite Hydrogel Sensor Integrated with Underwater Repeatable Self-Adhesion and Rapid Self-Healing for Human Motion Detection. Ling Q; Liu W; Liu J; Zhao L; Ren Z; Gu H ACS Appl Mater Interfaces; 2022 Jun; 14(21):24741-24754. PubMed ID: 35580208 [TBL] [Abstract][Full Text] [Related]
29. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
30. Cellulose nanocrystals boosted hydrophobic association in dual network polymer hydrogels as advanced flexible strain sensor for human motion detection. Khan M; Shah LA; Rahman TU; Yoo HM; Ye D; Vacharasin J J Mech Behav Biomed Mater; 2023 Feb; 138():105610. PubMed ID: 36509014 [TBL] [Abstract][Full Text] [Related]
31. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502 [TBL] [Abstract][Full Text] [Related]
32. Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties. Chen M; Quan Q; You Z; Dong Y; Zhou X Int J Biol Macromol; 2023 Dec; 253(Pt 6):127396. PubMed ID: 37827399 [TBL] [Abstract][Full Text] [Related]
33. Strain-Temperature Dual Sensor Based on Deep Learning Strategy for Human-Computer Interaction Systems. Wu X; Yang X; Wang P; Wang Z; Fan X; Duan W; Yue Y; Xie J; Liu Y ACS Sens; 2024 Aug; 9(8):4216-4226. PubMed ID: 39068608 [TBL] [Abstract][Full Text] [Related]
34. TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction. Dong B; Yu D; Lu P; Song Z; Chen W; Zhang F; Li B; Wang H; Liu W Carbohydr Polym; 2024 Feb; 326():121621. PubMed ID: 38142077 [TBL] [Abstract][Full Text] [Related]
35. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232 [TBL] [Abstract][Full Text] [Related]
36. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Zhang M; Wang Y; Liu K; Liu Y; Xu T; Du H; Si C Carbohydr Polym; 2023 Apr; 305():120567. PubMed ID: 36737205 [TBL] [Abstract][Full Text] [Related]
37. Multi-physics coupling reinforced polyvinyl alcohol/cellulose nanofibrils based multifunctional hydrogel sensor for human motion monitoring. Hu J; Li K; An L; Ding D; Chen S; Liu Z; Liu Y; Xu F Int J Biol Macromol; 2023 Apr; 235():123841. PubMed ID: 36863671 [TBL] [Abstract][Full Text] [Related]
38. Mechanically Ultra-Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. Long Y; Wang Z; Xu F; Jiang B; Xiao J; Yang J; Wang ZL; Hu W Small; 2022 Nov; 18(47):e2203956. PubMed ID: 36228096 [TBL] [Abstract][Full Text] [Related]
39. Skin-adhesive lignin-grafted-polyacrylamide/hydroxypropyl cellulose hydrogel sensor for real-time cervical spine bending monitoring in human-machine Interface. Chen Y; Lv X; Wang Y; Shi J; Luo S; Fan J; Sun B; Liu Y; Fan Q Int J Biol Macromol; 2023 Aug; 247():125833. PubMed ID: 37453629 [TBL] [Abstract][Full Text] [Related]
40. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. Kang B; Yan X; Zhao Z; Song S Langmuir; 2022 Jun; 38(22):7013-7023. PubMed ID: 35613322 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]