BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37838152)

  • 21. EEG and ECG-Based Multi-Sensor Fusion Computing for Real-Time Fatigue Driving Recognition Based on Feedback Mechanism.
    Wang L; Song F; Zhou TH; Hao J; Ryu KH
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach.
    Peivandi M; Ardabili SZ; Sheykhivand S; Danishvar S
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase lag index-based graph attention networks for detecting driving fatigue.
    Wang Z; Zhao Y; He Y; Zhang J
    Rev Sci Instrum; 2021 Sep; 92(9):094105. PubMed ID: 34598529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel convolutional neural network method for subject-independent driver drowsiness detection based on single-channel data and EEG alpha spindles.
    Houshmand S; Kazemi R; Salmanzadeh H
    Proc Inst Mech Eng H; 2021 Sep; 235(9):1069-1078. PubMed ID: 34028321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cross-scenario and cross-subject domain adaptation method for driving fatigue detection.
    Luo Y; Liu W; Li H; Lu Y; Lu BL
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38838664
    [No Abstract]   [Full Text] [Related]  

  • 26. Research on driving fatigue detection based on basic scale entropy and MVAR-PSI.
    Wang F; Kang X; Fu R; Lu B
    Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35788110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drivers' Comprehensive Emotion Recognition Based on HAM.
    Zhou D; Cheng Y; Wen L; Luo H; Liu Y
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis.
    Gong CA; Su CS; Liu YE; Guu DY; Chen YH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue at the wheel: A non-visual approach to truck driver fatigue detection by multi-feature fusion.
    He C; Xu P; Pei X; Wang Q; Yue Y; Han C
    Accid Anal Prev; 2024 May; 199():107511. PubMed ID: 38387154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Driving Fatigue Detection from EEG Using a Modified PCANet Method.
    Ma Y; Chen B; Li R; Wang C; Wang J; She Q; Luo Z; Zhang Y
    Comput Intell Neurosci; 2019; 2019():4721863. PubMed ID: 31396270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CSF-GTNet: A Novel Multi-Dimensional Feature Fusion Network Based on Convnext-GeLU- BiLSTM for EEG-Signals-Enabled Fatigue Driving Detection.
    Gao D; Li P; Wang M; Liang Y; Liu S; Zhou J; Wang L; Zhang Y
    IEEE J Biomed Health Inform; 2024 May; 28(5):2558-2568. PubMed ID: 37022236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensor-Based Classification of Primary and Secondary Car Driver Activities Using Convolutional Neural Networks.
    Doniec R; Konior J; SieciƄski S; Piet A; Irshad MT; Piaseczna N; Hasan MA; Li F; Nisar MA; Grzegorzek M
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition.
    Reddy YRM; Muralidhar P; Srinivas M
    Brain Topogr; 2024 Jan; 37(1):1-18. PubMed ID: 37995000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an algorithm for an EEG-based driver fatigue countermeasure.
    Lal SK; Craig A; Boord P; Kirkup L; Nguyen H
    J Safety Res; 2003; 34(3):321-8. PubMed ID: 12963079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical safety management driver identification based upon temporal variation characteristics of driving behavior.
    Zhang R; Wen X; Cao H; Cui P; Chai H; Hu R; Yu R
    Accid Anal Prev; 2023 Dec; 193():107307. PubMed ID: 37783160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feature extraction of EEG signals based on functional data analysis and its application to recognition of driver fatigue state.
    Shangguan P; Qiu T; Liu T; Zou S; Liu Z; Zhang S
    Physiol Meas; 2021 Jan; 41(12):125004. PubMed ID: 33126235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
    Li L; Sun N
    Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Driver Behavior Profiling and Recognition Using Deep-Learning Methods: In Accordance with Traffic Regulations and Experts Guidelines.
    Al-Hussein WA; Por LY; Kiah MLM; Zaidan BB
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A portable device for real time drowsiness detection using novel active dry electrode system.
    Tsai PY; Hu W; Kuo TB; Shyu LY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3775-8. PubMed ID: 19964814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Product Fuzzy Convolutional Network for Detecting Driving Fatigue.
    Du G; Long S; Li C; Wang Z; Liu PX
    IEEE Trans Cybern; 2023 Jul; 53(7):4175-4188. PubMed ID: 35171785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.