These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 37838916)
1. Biological Activity of Poly(1,3-propanediol citrate) Films and Nonwovens: Mechanical, Thermal, Antimicrobial, and Cytotoxicity Studies. Bandzerewicz A; Wierzchowski K; Mierzejewska J; Denis P; Gołofit T; Szymczyk-Ziółkowska P; Pilarek M; Gadomska-Gajadhur A Macromol Rapid Commun; 2024 Jan; 45(2):e2300452. PubMed ID: 37838916 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of poly(1,2-propanediol-co-1,8-octanediol-co-citrate) biodegradable elastomers for tissue engineering. Li J; Zheng W; Pan P; Sun X; Zhang Y Biomed Mater Eng; 2014; 24(1):619-24. PubMed ID: 24211946 [TBL] [Abstract][Full Text] [Related]
3. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold. Zhu L; Zhang Y; Ji Y J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114 [TBL] [Abstract][Full Text] [Related]
4. Exploring the application of poly(1,2-ethanediol citrate)/polylactide nonwovens in cell culturing. Bandzerewicz A; Howis J; Wierzchowski K; Slouf M; Hodan J; Denis P; Gołofit T; Pilarek M; Gadomska-Gajadhur A Front Bioeng Biotechnol; 2024; 12():1332290. PubMed ID: 38558787 [TBL] [Abstract][Full Text] [Related]
5. Citrate-Based Polyester Elastomer with Artificially Regulatable Degradation Rate on Demand. Wan L; Lu L; Liang X; Liu Z; Huang X; Du R; Luo Q; Xu Q; Zhang Q; Jia X Biomacromolecules; 2023 Sep; 24(9):4123-4137. PubMed ID: 37584644 [TBL] [Abstract][Full Text] [Related]
7. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. van Lith R; Gregory EK; Yang J; Kibbe MR; Ameer GA Biomaterials; 2014 Sep; 35(28):8113-22. PubMed ID: 24976244 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Yang J; Webb AR; Pickerill SJ; Hageman G; Ameer GA Biomaterials; 2006 Mar; 27(9):1889-98. PubMed ID: 16290904 [TBL] [Abstract][Full Text] [Related]
9. Biodegradable nanocomposite of glycerol citrate polyester and ultralong hydroxyapatite nanowires with improved mechanical properties and low acidity. Shen YQ; Zhu YJ; Yu HP; Lu BQ J Colloid Interface Sci; 2018 Nov; 530():9-15. PubMed ID: 29960123 [TBL] [Abstract][Full Text] [Related]
10. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering. Thomas LV; Nair PD Biomatter; 2011; 1(1):81-90. PubMed ID: 23507730 [TBL] [Abstract][Full Text] [Related]
11. Development of poly (1, 8-octanediol citrate)/chitosan blend films for tissue engineering applications. Zeimaran E; Pourshahrestani S; Pingguan-Murphy B; Kong D; Naveen SV; Kamarul T; Kadri NA Carbohydr Polym; 2017 Nov; 175():618-627. PubMed ID: 28917909 [TBL] [Abstract][Full Text] [Related]
12. Citrate chemistry and biology for biomaterials design. Ma C; Gerhard E; Lu D; Yang J Biomaterials; 2018 Sep; 178():383-400. PubMed ID: 29759730 [TBL] [Abstract][Full Text] [Related]
13. Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering. Jeong CG; Hollister SJ J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):141-9. PubMed ID: 20091910 [TBL] [Abstract][Full Text] [Related]
14. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers. Su LC; Xie Z; Zhang Y; Nguyen KT; Yang J Front Bioeng Biotechnol; 2014; 2():23. PubMed ID: 25023605 [TBL] [Abstract][Full Text] [Related]
15. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
16. A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering. Thomas LV; Arun U; Remya S; Nair PD J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S259-69. PubMed ID: 18925362 [TBL] [Abstract][Full Text] [Related]
17. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration. Sun D; Chen Y; Tran RT; Xu S; Xie D; Jia C; Wang Y; Guo Y; Zhang Z; Guo J; Yang J; Jin D; Bai X Sci Rep; 2014 Nov; 4():6912. PubMed ID: 25372769 [TBL] [Abstract][Full Text] [Related]
18. Preparation and properties of a novel biodegradable polyester elastomer with functional groups. Liu QY; Wu SZ; Tan TW; Weng JY; Zhang LQ; Liu L; Tian W; Chen DF J Biomater Sci Polym Ed; 2009; 20(11):1567-78. PubMed ID: 19619397 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of biomimetic citrate-based biodegradable composites. Tran RT; Wang L; Zhang C; Huang M; Tang W; Zhang C; Zhang Z; Jin D; Banik B; Brown JL; Xie Z; Bai X; Yang J J Biomed Mater Res A; 2014 Aug; 102(8):2521-32. PubMed ID: 23996976 [TBL] [Abstract][Full Text] [Related]
20. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity. Du Y; Yu M; Chen X; Ma PX; Lei B ACS Appl Mater Interfaces; 2016 Feb; 8(5):3079-91. PubMed ID: 26765285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]