These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 378392)

  • 41. GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose.
    Malakar P; Venkatesh KV
    FEMS Yeast Res; 2014 Mar; 14(2):346-56. PubMed ID: 24206532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure of the galactokinase gene of Escherichia coli, the last (?) gene of the gal operon.
    Debouck C; Riccio A; Schumperli D; McKenney K; Jeffers J; Hughes C; Rosenberg M; Heusterspreute M; Brunel F; Davison J
    Nucleic Acids Res; 1985 Mar; 13(6):1841-53. PubMed ID: 3158881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Structure and function of regulatory circuit of galactose-inducible genes in yeast].
    Fukasawa T; Sakurai H
    Tanpakushitsu Kakusan Koso; 1994 Mar; 39(4):483-92. PubMed ID: 8165293
    [No Abstract]   [Full Text] [Related]  

  • 44. Respiratory mutation and galactose metabolism in yeast Saccharomyces cerevisiae.
    Bień M; Kołodyński J; Lachowicz TM
    Acta Microbiol Pol; 1978; 27(3):193-202. PubMed ID: 81593
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression.
    Griggs DW; Johnston M
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8597-601. PubMed ID: 1924319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC36, CDC37, and CDC39.
    Breter HJ; Ferguson J; Peterson TA; Reed SI
    Mol Cell Biol; 1983 May; 3(5):881-91. PubMed ID: 6346060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae.
    Apostu R; Mackey MC
    J Theor Biol; 2012 Jan; 293():219-35. PubMed ID: 22024631
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sequence organization of two recombinant plasmids containing genes for the major heat shock-induced protein of D. melanogaster.
    Craig EA; McCarthy BJ; Wadsworth SC
    Cell; 1979 Mar; 16(3):575-88. PubMed ID: 110452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae.
    Ostergaard S; Walløe KO; Gomes SG; Olsson L; Nielsen J
    FEMS Yeast Res; 2001 Apr; 1(1):47-55. PubMed ID: 12702462
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Involvement of cDNA in homologous recombination between Ty elements in Saccharomyces cerevisiae.
    Melamed C; Nevo Y; Kupiec M
    Mol Cell Biol; 1992 Apr; 12(4):1613-20. PubMed ID: 1372387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The adaptive filter of the yeast galactose pathway.
    Smidtas S; Schächter V; Képès F
    J Theor Biol; 2006 Sep; 242(2):372-81. PubMed ID: 16643954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Absence of structural homology between sup1 and sup2 genes of yeast Saccharomyces cerevisiae and identification of their transcripts.
    Surguchov AP; Telkov MV; Smirnov VN
    FEBS Lett; 1986 Sep; 206(1):147-50. PubMed ID: 3019765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A minor class of 5S rRNA genes in Saccharomyces cerevisiae X2180-1B, one member of which lies adjacent to a Ty transposable element.
    Piper PW; Lockheart A; Patel N
    Nucleic Acids Res; 1984 May; 12(10):4083-96. PubMed ID: 6328410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequence of a yeast DNA fragment containing a chromosomal replicator and a tRNA Glu 3 gene.
    Feldmann H; Olah J; Friedenreich H
    Nucleic Acids Res; 1981 Jun; 9(12):2949-59. PubMed ID: 6269065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network.
    Ostergaard S; Olsson L; Johnston M; Nielsen J
    Nat Biotechnol; 2000 Dec; 18(12):1283-6. PubMed ID: 11101808
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Constitutive synthesis of the GAL4 protein, a galactose pathway regulator in Saccharomyces cerevisiae.
    Perlman D; Hopper JE
    Cell; 1979 Jan; 16(1):89-95. PubMed ID: 369708
    [No Abstract]   [Full Text] [Related]  

  • 57. Isolation of bacteriophage lambda containing yeast ribosomal RNA genes: screening by in situ RNA hybridization to plaques.
    Kramer RA; Cameron JR; Davis RW
    Cell; 1976 Jun; 8(2):227-32. PubMed ID: 786462
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Long-Term Adaptation to Galactose as a Sole Carbon Source Selects for Mutations Outside the Canonical GAL Pathway.
    Martínez AA; Conboy A; Buskirk SW; Marad DA; Lang GI
    J Mol Evol; 2023 Feb; 91(1):46-59. PubMed ID: 36482210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular expression and regulation of the galactose pathway genes in Saccharomyces cerevisiae. Distinct messenger RNAs specified by the Gali and Gal7 genes in the Gal7-Gal10-Gal1 cluster.
    Hopper JE; Rowe LB
    J Biol Chem; 1978 Oct; 253(20):7566-9. PubMed ID: 359549
    [No Abstract]   [Full Text] [Related]  

  • 60. Detection of specific DNA sequences in yeast by colony hybridization.
    Blanc H; Dujon B; Guerineau M; Slonimski PP
    Mol Gen Genet; 1978 May; 161(3):311-5. PubMed ID: 353517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.