BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37839203)

  • 1. The application of mixed stabilizing materials promotes the feasibility of the intercropping system of Gynostemma pentaphyllum/Helianthus annuus L. on arsenic contaminated soil.
    Chen W; Li M; Huang P; Meng D; Ying J; Yang Y; Qiu R; Li H
    J Environ Manage; 2023 Dec; 348():119284. PubMed ID: 37839203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice.
    Huang SY; Zhuo C; Du XY; Li HS
    Int J Phytoremediation; 2021; 23(10):1021-1029. PubMed ID: 33491468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation effect and mechanism of low-As-accumulating maize and peanut intercropping for safe-utilization of As-contaminated soil.
    Li Y; Liang D; Li B; Wang W; Li H
    Int J Phytoremediation; 2023; 25(14):1956-1966. PubMed ID: 37191287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management.
    Kang Z; Zhang W; Qin J; Li S; Yang X; Wei X; Li H
    Ecotoxicol Environ Saf; 2020 Mar; 190():110102. PubMed ID: 31881403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Cd-accumulating rice intercropping with Sesbania cannabina L. reduces grain Cd while promoting phytoremediation of Cd-contaminated soil.
    Kang Z; Gong M; Li Y; Chen W; Yang Y; Qin J; Li H
    Sci Total Environ; 2021 Dec; 800():149600. PubMed ID: 34426335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood.
    Govarthanan M; Mythili R; Selvankumar T; Kamala-Kannan S; Kim H
    Ecotoxicol Environ Saf; 2018 Apr; 151():279-284. PubMed ID: 29407561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercropping with Brassica juncea L. enhances maize yield and promotes phytoremediation of cadmium-contaminated soil by changing rhizosphere properties.
    Chi G; Fang Y; Zhu B; Guo N; Chen X
    J Hazard Mater; 2024 Jan; 461():132727. PubMed ID: 37813037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Potential of Intercropping
    Wang XH; Xiao XY; Guo ZH; Peng C; Wang XY
    Huan Jing Ke Xue; 2023 Jan; 44(1):426-435. PubMed ID: 36635830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping.
    Yan Y; Yang J; Wan X; Shi H; Yang J; Ma C; Lei M; Chen T
    Sci Total Environ; 2022 Mar; 812():152475. PubMed ID: 34952060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site.
    Zhang Y; Hu J; Bai J; Qin H; Wang J; Wang J; Lin X
    Ecotoxicol Environ Saf; 2019 Jan; 167():376-384. PubMed ID: 30366271
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Chen W; Yang Y; Meng D; Ying J; Huang H; Li H
    Plants (Basel); 2022 Dec; 11(23):. PubMed ID: 36501437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoaccumulation of zinc from contaminated soil using ornamental plants species
    Sharma M; Mathur J
    Int J Phytoremediation; 2023; 25(10):1289-1305. PubMed ID: 36448490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of intercropping with floricultural accumulator plants on cadmium accumulation in grapevine.
    Chen H; Lin L; Liao M; Wang J; Tang Y; Sun G; Liang D; Xia H; Deng Q; Wang X; Lv X; Ren W
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24474-24481. PubMed ID: 31230241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil.
    Chauhan P; Mathur J
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):29954-29966. PubMed ID: 32445141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation.
    Bian F; Zhong Z; Li C; Zhang X; Gu L; Huang Z; Gai X; Huang Z
    J Hazard Mater; 2021 Aug; 416():125898. PubMed ID: 34492836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil.
    Wan X; Lei M; Chen T; Yang J
    Sci Total Environ; 2017 Feb; 579():1467-1475. PubMed ID: 27908626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation of copper-contaminated soils by drip or sprinkling irrigation coupled with intercropping.
    Jiang L; Li N; Li X; Murati H; Hu Y; Su Y
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):81303-81313. PubMed ID: 37316625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize.
    Ma J; Lei E; Lei M; Liu Y; Chen T
    Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc.
    Zou J; Song F; Lu Y; Zhuge Y; Niu Y; Lou Y; Pan H; Zhang P; Pang L
    Chemosphere; 2021 Aug; 276():130223. PubMed ID: 34088099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations.
    Wang W; Yang X; Mo Q; Li Y; Meng D; Li H
    Ecotoxicol Environ Saf; 2023 Jul; 259():115004. PubMed ID: 37196521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.