These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37839241)
1. Ultrafast alternating-current exfoliation toward large-scale synthesis of graphene and its application for flexible supercapacitors. Zhang Y; Hou W; Chang R; Yao X; Xu Y J Colloid Interface Sci; 2024 Jan; 654(Pt A):246-257. PubMed ID: 37839241 [TBL] [Abstract][Full Text] [Related]
2. Electrochemically Scalable Production of Fluorine-Modified Graphene for Flexible and High-Energy Ionogel-Based Microsupercapacitors. Zhou F; Huang H; Xiao C; Zheng S; Shi X; Qin J; Fu Q; Bao X; Feng X; Müllen K; Wu ZS J Am Chem Soc; 2018 Jul; 140(26):8198-8205. PubMed ID: 29893575 [TBL] [Abstract][Full Text] [Related]
3. Ultrafast Delamination of Graphite into High-Quality Graphene Using Alternating Currents. Yang S; Ricciardulli AG; Liu S; Dong R; Lohe MR; Becker A; Squillaci MA; Samorì P; Müllen K; Feng X Angew Chem Int Ed Engl; 2017 Jun; 56(23):6669-6675. PubMed ID: 28466961 [TBL] [Abstract][Full Text] [Related]
4. Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene. Yang S; Brüller S; Wu ZS; Liu Z; Parvez K; Dong R; Richard F; Samorì P; Feng X; Müllen K J Am Chem Soc; 2015 Nov; 137(43):13927-32. PubMed ID: 26460583 [TBL] [Abstract][Full Text] [Related]
5. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Parvez K; Wu ZS; Li R; Liu X; Graf R; Feng X; Müllen K J Am Chem Soc; 2014 Apr; 136(16):6083-91. PubMed ID: 24684678 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. Munuera JM; Paredes JI; Enterría M; Pagán A; Villar-Rodil S; Pereira MFR; Martins JI; Figueiredo JL; Cenis JL; Martínez-Alonso A; Tascón JMD ACS Appl Mater Interfaces; 2017 Jul; 9(28):24085-24099. PubMed ID: 28644607 [TBL] [Abstract][Full Text] [Related]
7. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite. Wu L; Li W; Li P; Liao S; Qiu S; Chen M; Guo Y; Li Q; Zhu C; Liu L Small; 2014 Apr; 10(7):1421-9. PubMed ID: 24323826 [TBL] [Abstract][Full Text] [Related]
8. Preparation of colloidal graphene in quantity by electrochemical exfoliation. Chen K; Xue D J Colloid Interface Sci; 2014 Dec; 436():41-6. PubMed ID: 25265584 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen-Doped Graphene via Jing M; Wu T; Zhou Y; Li X; Liu Y Front Chem; 2020; 8():428. PubMed ID: 32582631 [TBL] [Abstract][Full Text] [Related]
10. Efficient Graphene Production by Combined Bipolar Electrochemical Intercalation and High-Shear Exfoliation. Bjerglund ET; Kristensen MEP; Stambula S; Botton GA; Pedersen SU; Daasbjerg K ACS Omega; 2017 Oct; 2(10):6492-6499. PubMed ID: 31457250 [TBL] [Abstract][Full Text] [Related]
11. Graphene oxide obtention via liquid phase exfoliation from high-rank coal: A comparison of mineral matter removal by alkaline bath. Franco C; Lozano-Pérez AS; Mendieta-Reyes NE; Guerrero-Fajardo CA MethodsX; 2023; 10():102147. PubMed ID: 37064756 [TBL] [Abstract][Full Text] [Related]
12. Upscaling Brønsted acid intercalation and exfoliation of graphite into graphene by polyoxometalate clusters for sodium-ion battery application. Wei Z; Ding T; Bai C; Zhang R; Yang S; Wei W J Colloid Interface Sci; 2024 Dec; 676():158-167. PubMed ID: 39024816 [TBL] [Abstract][Full Text] [Related]
13. Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite. Liu X; Zheng M; Xiao K; Xiao Y; He C; Dong H; Lei B; Liu Y Nanoscale; 2014 May; 6(9):4598-603. PubMed ID: 24632864 [TBL] [Abstract][Full Text] [Related]
14. Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors. Chen H; Chen S; Zhang Y; Ren H; Hu X; Bai Y ACS Appl Mater Interfaces; 2020 Dec; 12(50):56319-56329. PubMed ID: 33280375 [TBL] [Abstract][Full Text] [Related]
15. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Chen CH; Yang SW; Chuang MC; Woon WY; Su CY Nanoscale; 2015 Oct; 7(37):15362-73. PubMed ID: 26332120 [TBL] [Abstract][Full Text] [Related]
16. Efficient preparation of high-quality graphene via anodic and cathodic simultaneous electrochemical exfoliation under the assistance of microwave. Wu J; Wang H; Qiu J; Zhang K; Shao J; Yan L J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1422-1431. PubMed ID: 34742062 [TBL] [Abstract][Full Text] [Related]
17. Facile synthesis of an all-in-one graphene nanosheets@nickel electrode for high-power performance supercapacitor application. Huang B; Zhao Z; Chen J; Sun Y; Yang X; Wang J; Shen H; Jin Y RSC Adv; 2018 Dec; 8(72):41323-41330. PubMed ID: 35559327 [TBL] [Abstract][Full Text] [Related]
19. A "Tandem" Strategy to Fabricate Flexible Graphene/Polypyrrole Nanofiber Film Using the Surfactant-Exfoliated Graphene for Supercapacitors. Shu K; Chao Y; Chou S; Wang C; Zheng T; Gambhir S; Wallace GG ACS Appl Mater Interfaces; 2018 Jul; 10(26):22031-22041. PubMed ID: 29882651 [TBL] [Abstract][Full Text] [Related]
20. Insights into the Conductive Network of Electrochemical Exfoliation with Graphite Powder as Starting Raw Material for Graphene Production. Mei J; Qiu Z; Gao T; Wu Q; Zheng F; Jiang J; Liu K; Huang Y; Wang H; Li Q Langmuir; 2023 Mar; 39(12):4413-4426. PubMed ID: 36922738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]