These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37839380)
1. Protein nanoscaffold enables programmable nanobody-luciferase immunoassembly for sensitive and simultaneous detection of aflatoxin B1 and ochratoxin A. Wu S; Xu J; Chen W; Wang F; Tan X; Zou X; Zhou W; Huang W; Zheng Y; Wang S; Yan S J Hazard Mater; 2024 Jan; 462():132701. PubMed ID: 37839380 [TBL] [Abstract][Full Text] [Related]
2. One-Step Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Fusion for Detection of Aflatoxin B Ren W; Li Z; Xu Y; Wan D; Barnych B; Li Y; Tu Z; He Q; Fu J; Hammock BD J Agric Food Chem; 2019 May; 67(18):5221-5229. PubMed ID: 30883117 [TBL] [Abstract][Full Text] [Related]
3. Chemiluminescent Enzyme Immunoassay and Bioluminescent Enzyme Immunoassay for Tenuazonic Acid Mycotoxin by Exploitation of Nanobody and Nanobody-Nanoluciferase Fusion. Wang F; Li ZF; Yang YY; Wan DB; Vasylieva N; Zhang YQ; Cai J; Wang H; Shen YD; Xu ZL; Hammock BD Anal Chem; 2020 Sep; 92(17):11935-11942. PubMed ID: 32702970 [TBL] [Abstract][Full Text] [Related]
4. Nanobody-Nanoluciferase Fusion Protein-Enabled Immunoassay for Ochratoxin A in Coffee with Enhanced Specificity and Sensitivity. Bao K; Liu X; Liao Y; Liu Z; Cao H; Wu L; Chen Q Toxins (Basel); 2022 Oct; 14(10):. PubMed ID: 36287981 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Non-Toxic Immunodetection of Wang F; Li ZF; Wan DB; Vasylieva N; Shen YD; Xu ZL; Yang JY; Gettemans J; Wang H; Hammock BD; Sun YM J Agric Food Chem; 2021 Apr; 69(16):4911-4917. PubMed ID: 33870684 [TBL] [Abstract][Full Text] [Related]
6. A novel nanobody and mimotope based immunoassay for rapid analysis of aflatoxin B1. Zhao F; Tian Y; Shen Q; Liu R; Shi R; Wang H; Yang Z Talanta; 2019 Apr; 195():55-61. PubMed ID: 30625581 [TBL] [Abstract][Full Text] [Related]
7. An Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Heptamer Fusion for the Detection of Tetrabromobisphenol A in Sediment. Li Z; Wang Y; Vasylieva N; Wan D; Yin Z; Dong J; Hammock BD Anal Chem; 2020 Jul; 92(14):10083-10090. PubMed ID: 32559059 [TBL] [Abstract][Full Text] [Related]
8. Development of a bioluminescent immunoassay based on Fc-specific conjugated antibody-nanoluciferase immunoreagents for determining aflatoxin B Du Y; Yang HM; Zhang YM; Ma L; Gong XM; Tang JB Food Chem; 2025 Jan; 463(Pt 2):141220. PubMed ID: 39265299 [TBL] [Abstract][Full Text] [Related]
9. Nanobody-Based Assays for the Detection of Environmental and Agricultural Contaminants. Wang F; Wang H Methods Mol Biol; 2022; 2446():547-554. PubMed ID: 35157293 [TBL] [Abstract][Full Text] [Related]
10. Immunoassay of ochratoxin and other mycotoxins from a single extract of cereal grains utilizing monoclonal antibodies. Lacey J; Ramakrishna N; Candlish AA; Smith JE IARC Sci Publ; 1991; (115):97-103. PubMed ID: 1820360 [TBL] [Abstract][Full Text] [Related]
11. Generation of Dual functional Nanobody-Nanoluciferase Fusion and its potential in Bioluminescence Enzyme Immunoassay for trace Glypican-3 in Serum. Yu S; Li Z; Li J; Zhao S; Wu S; Liu H; Bi X; Li D; Dong J; Duan S; Hammock BD Sens Actuators B Chem; 2021 Jun; 336():. PubMed ID: 35250176 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous quantitative determination of multiple mycotoxins in cereal and feedstuff samples by a suspension array immunoassay. Wang YK; Yan YX; Li SQ; Wang HA; Ji WH; Sun JH J Agric Food Chem; 2013 Nov; 61(46):10948-53. PubMed ID: 24156401 [TBL] [Abstract][Full Text] [Related]
13. Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Chen Y; Chen Q; Han M; Zhou J; Gong L; Niu Y; Zhang Y; He L; Zhang L Food Chem; 2016 Dec; 213():478-484. PubMed ID: 27451207 [TBL] [Abstract][Full Text] [Related]
14. A fluorescence immunoassay based on GSH destroying MnO Jin Z; Sheng W; Liu J; Liu C; Ma Y; Wang S; Zhang W; Huang N Food Chem; 2023 Sep; 420():136099. PubMed ID: 37037114 [TBL] [Abstract][Full Text] [Related]
15. Development of Real-Time Immuno-PCR Based on Phage Displayed an Anti-Idiotypic Nanobody for Quantitative Determination of Citrinin in Huang W; Tu Z; Ning Z; He Q; Li Y Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31575068 [TBL] [Abstract][Full Text] [Related]
16. Direct Immunoassay for Facile and Sensitive Detection of Small Molecule Aflatoxin B Pan D; Li G; Hu H; Xue H; Zhang M; Zhu M; Gong X; Zhang Y; Wan Y; Shen Y Chemistry; 2018 Jul; 24(39):9869-9876. PubMed ID: 29766584 [TBL] [Abstract][Full Text] [Related]
17. Multiplexed mycotoxins determination employing white light reflectance spectroscopy and silicon chips with silicon oxide areas of different thickness. Anastasiadis V; Koukouvinos G; Petrou PS; Economou A; Dekker J; Harjanne M; Heimala P; Goustouridis D; Raptis I; Kakabakos SE Biosens Bioelectron; 2020 Apr; 153():112035. PubMed ID: 31989941 [TBL] [Abstract][Full Text] [Related]
18. A Novel Lateral Flow Immunochromatographic Assay for Rapid and Simultaneous Detection of Aflatoxin B1 and Zearalenone in Food and Feed Samples Based on Highly Sensitive and Specific Monoclonal Antibodies. Wang Y; Wang X; Wang S; Fotina H; Wang Z Toxins (Basel); 2022 Sep; 14(9):. PubMed ID: 36136553 [TBL] [Abstract][Full Text] [Related]
19. Nanobody Technology for Mycotoxin Detection in the Field of Food Safety: Current Status and Prospects. He T; Zhu J; Nie Y; Hu R; Wang T; Li P; Zhang Q; Yang Y Toxins (Basel); 2018 Apr; 10(5):. PubMed ID: 29710823 [TBL] [Abstract][Full Text] [Related]
20. Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays. Lu Q; Li X; Zhao J; Zhu J; Luo Y; Duan H; Ji P; Wang K; Liu B; Wang X; Fan W; Sun Y; Zhou EM; Zhao Q J Nanobiotechnology; 2020 Jan; 18(1):7. PubMed ID: 31910833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]