These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37839392)

  • 21. Shotguns and SNPs: how fast and cheap sequencing is revolutionizing plant biology.
    Rounsley SD; Last RL
    Plant J; 2010 Mar; 61(6):922-7. PubMed ID: 20409267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolomics-Driven Mining of Metabolite Resources: Applications and Prospects for Improving Vegetable Crops.
    Singh DP; Bisen MS; Shukla R; Prabha R; Maurya S; Reddy YS; Singh PM; Rai N; Chaubey T; Chaturvedi KK; Srivastava S; Farooqi MS; Gupta VK; Sarma BK; Rai A; Behera TK
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36292920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between genetics and environment shape Camelina seed oil composition.
    Brock JR; Scott T; Lee AY; Mosyakin SL; Olsen KM
    BMC Plant Biol; 2020 Sep; 20(1):423. PubMed ID: 32928104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Twenty years of plant genome sequencing: achievements and challenges.
    Sun Y; Shang L; Zhu QH; Fan L; Guo L
    Trends Plant Sci; 2022 Apr; 27(4):391-401. PubMed ID: 34782248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A stress-free walk from Arabidopsis to crops.
    Chew YH; Halliday KJ
    Curr Opin Biotechnol; 2011 Apr; 22(2):281-6. PubMed ID: 21168324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using crop growth model stress covariates and AMMI decomposition to better predict genotype-by-environment interactions.
    Rincent R; Malosetti M; Ababaei B; Touzy G; Mini A; Bogard M; Martre P; Le Gouis J; van Eeuwijk F
    Theor Appl Genet; 2019 Dec; 132(12):3399-3411. PubMed ID: 31562567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crop genome sequencing: lessons and rationales.
    Feuillet C; Leach JE; Rogers J; Schnable PS; Eversole K
    Trends Plant Sci; 2011 Feb; 16(2):77-88. PubMed ID: 21081278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association.
    Mangin B; Casadebaig P; Cadic E; Blanchet N; Boniface MC; Carrère S; Gouzy J; Legrand L; Mayjonade B; Pouilly N; André T; Coque M; Piquemal J; Laporte M; Vincourt P; Muños S; Langlade NB
    Plant Cell Environ; 2017 Oct; 40(10):2276-2291. PubMed ID: 28418069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes.
    Mirouze M; Vitte C
    J Exp Bot; 2014 Jun; 65(10):2801-12. PubMed ID: 24744427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity.
    Napier JD; Heckman RW; Juenger TE
    Plant Cell; 2023 Jan; 35(1):109-124. PubMed ID: 36342220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing.
    Bekalu ZE; Panting M; Bæksted Holme I; Brinch-Pedersen H
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions.
    Heslot N; Akdemir D; Sorrells ME; Jannink JL
    Theor Appl Genet; 2014 Feb; 127(2):463-80. PubMed ID: 24264761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. QTL analysis of leaf architecture.
    Pérez-Pérez JM; Esteve-Bruna D; Micol JL
    J Plant Res; 2010 Jan; 123(1):15-23. PubMed ID: 19885640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-genome analysis of recombinant inbred rice lines reveals a quantitative trait locus on chromosome 3 with genotype-by-environment interaction effects.
    Sakai T; Fujioka T; Uemura T; Saito S; Terauchi R; Abe A
    G3 (Bethesda); 2023 Jun; 13(6):. PubMed ID: 37052949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling the crop: from system dynamics to systems biology.
    Yin X; Struik PC
    J Exp Bot; 2010 May; 61(8):2171-83. PubMed ID: 20051352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving process-based crop models to better capture genotype×environment×management interactions.
    Wang E; Brown HE; Rebetzke GJ; Zhao Z; Zheng B; Chapman SC
    J Exp Bot; 2019 Apr; 70(9):2389-2401. PubMed ID: 30921457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load×QTL interactions.
    Kromdijk J; Bertin N; Heuvelink E; Molenaar J; de Visser PH; Marcelis LF; Struik PC
    J Exp Bot; 2014 Jan; 65(1):11-22. PubMed ID: 24227339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant research. Can genetically modified crops go 'greener'?
    Moffat AS
    Science; 2000 Oct; 290(5490):253-4 P. PubMed ID: 11183370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants.
    Großkinsky DK; Syaifullah SJ; Roitsch T
    J Exp Bot; 2018 Feb; 69(4):825-844. PubMed ID: 29444308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Models for navigating biological complexity in breeding improved crop plants.
    Hammer G; Cooper M; Tardieu F; Welch S; Walsh B; van Eeuwijk F; Chapman S; Podlich D
    Trends Plant Sci; 2006 Dec; 11(12):587-93. PubMed ID: 17092764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.