These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37839392)

  • 41. Crop genome-wide association study: a harvest of biological relevance.
    Liu HJ; Yan J
    Plant J; 2019 Jan; 97(1):8-18. PubMed ID: 30368955
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of Genetic and Cultivation Technology in Maize Prolific and Productivity Increase.
    Mochammad Abduh AD; Padjung R; Farid M; Bahrun AH; Fuad Anshori M; Nasaruddin ; Ridwan I; Nur A; Taufik M
    Pak J Biol Sci; 2021 Jan; 24(6):716-723. PubMed ID: 34486348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Natural and artificially induced genetic variability in crop and model plant species for plant systems biology.
    Rothan C; Causse M
    EXS; 2007; 97():21-53. PubMed ID: 17432262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
    Weckwerth W
    J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Natural variations and genome-wide association studies in crop plants.
    Huang X; Han B
    Annu Rev Plant Biol; 2014; 65():531-51. PubMed ID: 24274033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana.
    Ibañez C; Poeschl Y; Peterson T; Bellstädt J; Denk K; Gogol-Döring A; Quint M; Delker C
    BMC Plant Biol; 2017 Jul; 17(1):114. PubMed ID: 28683779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plant exomics: concepts, applications and methodologies in crop improvement.
    Hashmi U; Shafqat S; Khan F; Majid M; Hussain H; Kazi AG; John R; Ahmad P
    Plant Signal Behav; 2015; 10(1):e976152. PubMed ID: 25482786
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A dynamic framework for quantifying the genetic architecture of phenotypic plasticity.
    Wang Z; Pang X; Lv Y; Xu F; Zhou T; Li X; Feng S; Li J; Li Z; Wu R
    Brief Bioinform; 2013 Jan; 14(1):82-95. PubMed ID: 22396460
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Breeding for sustainable oilseed crop yield and quality in a changing climate.
    Attia Z; Pogoda CS; Reinert S; Kane NC; Hulke BS
    Theor Appl Genet; 2021 Jun; 134(6):1817-1827. PubMed ID: 33496832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flowering time regulation in crops—what did we learn from Arabidopsis?
    Blümel M; Dally N; Jung C
    Curr Opin Biotechnol; 2015 Apr; 32():121-129. PubMed ID: 25553537
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association mapping of germination traits in Arabidopsis thaliana under light and nutrient treatments: searching for G×E effects.
    Morrison GD; Linder CR
    G3 (Bethesda); 2014 Jun; 4(8):1465-78. PubMed ID: 24902604
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic model of central carbon and energy metabolisms of growing Arabidopsis thaliana in relation to sucrose translocation.
    Zakhartsev M; Medvedeva I; Orlov Y; Akberdin I; Krebs O; Schulze WX
    BMC Plant Biol; 2016 Dec; 16(1):262. PubMed ID: 28031032
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Volatile organic compounds as non-invasive markers for plant phenotyping.
    Niederbacher B; Winkler JB; Schnitzler JP
    J Exp Bot; 2015 Sep; 66(18):5403-16. PubMed ID: 25969554
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought.
    El-Soda M; Kruijer W; Malosetti M; Koornneef M; Aarts MG
    Plant Cell Environ; 2015 Mar; 38(3):585-99. PubMed ID: 25074022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrating molecular markers into metabolic models improves genomic selection for Arabidopsis growth.
    Tong H; Küken A; Nikoloski Z
    Nat Commun; 2020 May; 11(1):2410. PubMed ID: 32415110
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Applying modelling experiences from the past to shape crop systems biology: the need to converge crop physiology and functional genomics.
    Yin X; Struik PC
    New Phytol; 2008; 179(3):629-642. PubMed ID: 18373652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Target genes for plant productivity improvement.
    Nowicka B
    J Biotechnol; 2019 Jun; 298():21-34. PubMed ID: 30978366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana.
    Nägele T; Weckwerth W
    Front Plant Sci; 2013; 4():541. PubMed ID: 24400018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions.
    Zan Y; Shen X; Forsberg SK; Carlborg Ö
    G3 (Bethesda); 2016 Aug; 6(8):2319-28. PubMed ID: 27226169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.