These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37839647)

  • 21. Arginine deiminase pathway of Tetragenococcus halophilus contributes to improve the acid tolerance of lactic acid bacteria.
    Yang H; Wang D; Jin Y; Zhou R; Huang J; Wu C
    Food Microbiol; 2023 Aug; 113():104281. PubMed ID: 37098426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective extracellular secretion of small double-stranded RNA by Tetragenococcus halophilus.
    Imrat ; Labala RK; Behara AK; Jeyaram K
    Funct Integr Genomics; 2022 Dec; 23(1):10. PubMed ID: 36542169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evolutionary mechanism and function analysis of two subgroups of histamine-producing and non-histamine-producing Tetragenococcus halophilus.
    Ma J; Nie Y; Zhang L; Xu Y
    Food Res Int; 2024 Jan; 176():113744. PubMed ID: 38163696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of a Novel Shuttle Vector for
    Kim MJ; Kim TJ; Kang YJ; Yoo JY; Kim JH
    J Microbiol Biotechnol; 2023 Feb; 33(2):211-218. PubMed ID: 36575862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of viable bacterial starter cultures of Virgibacillus sp. and Tetragenococcus halophilus in fish sauce fermentation by real-time quantitative PCR.
    Udomsil N; Chen S; Rodtong S; Yongsawatdigul J
    Food Microbiol; 2016 Aug; 57():54-62. PubMed ID: 27052702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aflatoxin B
    Li J; Huang J; Jin Y; Wu C; Shen D; Zhang S; Zhou R
    Food Chem Toxicol; 2018 Nov; 121():430-436. PubMed ID: 30165130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural characterization and bioactivity of novel exopolysaccharides produced by Tetragenococcus halophilus.
    Zhang M; Zeng S; Hao L; Yao S; Wang D; Yang H; Wu C
    Food Res Int; 2022 May; 155():111083. PubMed ID: 35400459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Capsular Polysaccharide Synthesis Loci Determining Bacteriophage Susceptibility in Tetragenococcus halophilus.
    Wakinaka T; Matsutani M; Watanabe J; Mogi Y; Tokuoka M; Ohnishi A
    Microbiol Spectr; 2023 Jun; 11(3):e0038523. PubMed ID: 37154759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation.
    Zhang L; Zhang L; Xu Y
    J Sci Food Agric; 2020 Apr; 100(6):2782-2790. PubMed ID: 32020610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of an Aminopeptidase A from
    Kim TJ; Kim MJ; Kang YJ; Yoo JY; Kim JH
    J Microbiol Biotechnol; 2023 Mar; 33(3):371-377. PubMed ID: 36597589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted Screening for Spontaneous Insertion Mutations in a Lactic Acid Bacterium, Tetragenococcus halophilus.
    Nukagawa Y; Wakinaka T; Mogi Y; Watanabe J
    Appl Environ Microbiol; 2023 Mar; 89(3):e0200522. PubMed ID: 36809065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic Insight into the Salt Tolerance of
    Heo S; Lee J; Lee JH; Jeong DW
    J Microbiol Biotechnol; 2019 Oct; 29(10):1591-1602. PubMed ID: 31546297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring the growth dynamics of Tetragenococcus halophilus strains in lupine moromi fermentation using a multiplex-PCR system.
    Link T; Ehrmann MA
    BMC Res Notes; 2023 Jun; 16(1):115. PubMed ID: 37349831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of DinJ-YafQ toxin-antitoxin module in Tetragenococcus halophilus: activity, interplay, and evolution.
    Luo X; Lin J; Yan J; Kuang X; Su H; Lin W; Luo L
    Appl Microbiol Biotechnol; 2021 May; 105(9):3659-3672. PubMed ID: 33877415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transposition of IS
    Wakinaka T; Watanabe J
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30877114
    [No Abstract]   [Full Text] [Related]  

  • 36. Composition and Metabolic Activities of the Bacterial Community in Shrimp Sauce at the Flavor-Forming Stage of Fermentation As Revealed by Metatranscriptome and 16S rRNA Gene Sequencings.
    Duan S; Hu X; Li M; Miao J; Du J; Wu R
    J Agric Food Chem; 2016 Mar; 64(12):2591-603. PubMed ID: 26978261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation.
    Kim KH; Lee SH; Chun BH; Jeong SE; Jeon CO
    Food Microbiol; 2019 Sep; 82():465-473. PubMed ID: 31027807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segregation of Tetragenococcus halophilus and Zygosaccharomyces rouxii using W
    Devanthi PVP; El Kadri H; Bowden A; Spyropoulos F; Gkatzionis K
    Food Res Int; 2018 Mar; 105():333-343. PubMed ID: 29433222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ribitol-Containing Wall Teichoic Acid of Tetragenococcus halophilus Is Targeted by Bacteriophage phiWJ7 as a Binding Receptor.
    Wakinaka T; Matsutani M; Watanabe J; Mogi Y; Tokuoka M; Ohnishi A
    Microbiol Spectr; 2022 Apr; 10(2):e0033622. PubMed ID: 35311554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative genomics of Tetragenococcus halophilus.
    Nishimura I; Shiwa Y; Sato A; Oguma T; Yoshikawa H; Koyama Y
    J Gen Appl Microbiol; 2018 Jan; 63(6):369-372. PubMed ID: 29046500
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.