These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 37839679)
1. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. Rockwell NC; Lagarias JC J Mol Biol; 2024 Mar; 436(5):168313. PubMed ID: 37839679 [TBL] [Abstract][Full Text] [Related]
2. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
3. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
4. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Rockwell NC; Martin SS; Feoktistova K; Lagarias JC Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441 [TBL] [Abstract][Full Text] [Related]
5. Cyanobacteriochromes: A Rainbow of Photoreceptors. Rockwell NC; Lagarias JC Annu Rev Microbiol; 2024 Nov; 78(1):61-81. PubMed ID: 38848579 [TBL] [Abstract][Full Text] [Related]
6. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. Priyadarshini N; Steube N; Wiens D; Narikawa R; Wilde A; Hochberg GKA; Enomoto G Photochem Photobiol Sci; 2023 Jun; 22(6):1415-1427. PubMed ID: 36781703 [TBL] [Abstract][Full Text] [Related]
7. Conservation and diversity in the primary forward photodynamics of red/green cyanobacteriochromes. Gottlieb SM; Kim PW; Chang CW; Hanke SJ; Hayer RJ; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2015 Feb; 54(4):1028-42. PubMed ID: 25545467 [TBL] [Abstract][Full Text] [Related]
8. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Hirose Y; Rockwell NC; Nishiyama K; Narikawa R; Ukaji Y; Inomata K; Lagarias JC; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4974-9. PubMed ID: 23479641 [TBL] [Abstract][Full Text] [Related]
9. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Burgie ES; Walker JM; Phillips GN; Vierstra RD Structure; 2013 Jan; 21(1):88-97. PubMed ID: 23219880 [TBL] [Abstract][Full Text] [Related]
11. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Hoshino H; Narikawa R Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209 [TBL] [Abstract][Full Text] [Related]
12. Primary and secondary photodynamics of the violet/orange dual-cysteine NpF2164g3 cyanobacteriochrome domain from Nostoc punctiforme. Gottlieb SM; Kim PW; Corley SC; Madsen D; Hanke SJ; Chang CW; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2014 Feb; 53(6):1029-40. PubMed ID: 24437620 [TBL] [Abstract][Full Text] [Related]
13. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Ikeuchi M; Ishizuka T Photochem Photobiol Sci; 2008 Oct; 7(10):1159-67. PubMed ID: 18846279 [TBL] [Abstract][Full Text] [Related]
14. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Hoshino H; Miyake K; Fushimi K; Narikawa R Protein Sci; 2024 Aug; 33(8):e5132. PubMed ID: 39072823 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of D Hasegawa M; Fushimi K; Miyake K; Nakajima T; Oikawa Y; Enomoto G; Sato M; Ikeuchi M; Narikawa R J Biol Chem; 2018 Feb; 293(5):1713-1727. PubMed ID: 29229775 [TBL] [Abstract][Full Text] [Related]
16. Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes. Villafani Y; Yang HW; Park YI Mol Cells; 2020 Jun; 43(6):509-516. PubMed ID: 32438780 [TBL] [Abstract][Full Text] [Related]
17. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis. Suzuki T; Yoshimura M; Arai M; Narikawa R J Mol Biol; 2024 Mar; 436(5):168451. PubMed ID: 38246412 [TBL] [Abstract][Full Text] [Related]
18. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process. Takeda Y; Ohtsu I; Suzuki T; Nakasone Y; Fushimi K; Ikeuchi M; Terazima M; Dohra H; Narikawa R Arch Biochem Biophys; 2023 Sep; 745():109715. PubMed ID: 37549803 [TBL] [Abstract][Full Text] [Related]
19. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331 [TBL] [Abstract][Full Text] [Related]
20. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]