These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37839833)
21. Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. Giese EC; Gascon J; Anzelmo G; Barbosa AM; da Cunha MA; Dekker RF Int J Biol Macromol; 2015 Jan; 72():125-30. PubMed ID: 25128096 [TBL] [Abstract][Full Text] [Related]
22. Biological Activity of High-Purity β-1,3-1,6-Glucan Derived from the Black Yeast Suzuki T; Kusano K; Kondo N; Nishikawa K; Kuge T; Ohno N Nutrients; 2021 Jan; 13(1):. PubMed ID: 33467004 [TBL] [Abstract][Full Text] [Related]
23. Anti-inflammatory effects of β-1,3-1,6-glucan derived from black yeast Aureobasidium pullulans in RAW264.7 cells. No H; Kim J; Seo CR; Lee DE; Kim JH; Kuge T; Mori T; Kimoto H; Kim JK Int J Biol Macromol; 2021 Dec; 193(Pt A):592-600. PubMed ID: 34678386 [TBL] [Abstract][Full Text] [Related]
24. Application of limulus test (G pathway) for the detection of different conformers of (1-->3)-beta-D-glucans. Nagi N; Ohno N; Adachi Y; Aketagawa J; Tamura H; Shibata Y; Tanaka S; Yadomae T Biol Pharm Bull; 1993 Sep; 16(9):822-8. PubMed ID: 8268846 [TBL] [Abstract][Full Text] [Related]
25. Antioxidant properties of carboxymethyl glucan: comparative analysis. Babincová M; Bacová Z; Machová E; Kogan G J Med Food; 2002; 5(2):79-83. PubMed ID: 12487754 [TBL] [Abstract][Full Text] [Related]
26. Carboxymethylated beta-glucan derived from Poria cocos with biological activities. Wang Y; Yu Y; Mao J J Agric Food Chem; 2009 Nov; 57(22):10913-5. PubMed ID: 19877636 [TBL] [Abstract][Full Text] [Related]
27. The effects of gene disruption of Kre6-like proteins on the phenotype of β-glucan-producing Aureobasidium pullulans. Uchiyama H; Iwai A; Dohra H; Ohnishi T; Kato T; Park EY Appl Microbiol Biotechnol; 2018 May; 102(10):4467-4475. PubMed ID: 29600492 [TBL] [Abstract][Full Text] [Related]
28. Sulfonated and Carboxymethylated β-Glucan Derivatives with Inhibitory Activity against Herpes and Dengue Viruses. Lopes JL; Quinteiro VST; Wouk J; Darido ML; Dekker RFH; Barbosa-Dekker AM; Vetvicka V; Cunha MAA; Faccin-Galhardi LC; Orsato A Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681671 [TBL] [Abstract][Full Text] [Related]
29. The correlation between adhesion of schizophyllan to yeast glucan and its effect on regeneration of yeast protoplast. Hisamatsu M; Mishima T; Teranishi K; Yamada T Carbohydr Res; 1997 Feb; 298(1-2):117-21. PubMed ID: 9076934 [TBL] [Abstract][Full Text] [Related]
30. Comparison of the blood clearance of triple- and single-helical schizophyllan in mice. Miura NN; Ohno N; Adachi Y; Aketagawa J; Tamura H; Tanaka S; Yadomae T Biol Pharm Bull; 1995 Jan; 18(1):185-9. PubMed ID: 7735240 [TBL] [Abstract][Full Text] [Related]
31. Antitumor and antimetastatic activity of a novel water-soluble low molecular weight beta-1, 3-D-glucan (branch beta-1,6) isolated from Aureobasidium pullulans 1A1 strain black yeast. Kimura Y; Sumiyoshi M; Suzuki T; Sakanaka M Anticancer Res; 2006; 26(6B):4131-41. PubMed ID: 17201124 [TBL] [Abstract][Full Text] [Related]
32. Preparation and characterization of hydrophobic and hydrophilic amidated derivatives of carboxymethyl chitosan and carboxymethyl β-glucan. Taubner T; Marounek M; Synytsya A Int J Biol Macromol; 2020 Nov; 163():1433-1443. PubMed ID: 32738322 [TBL] [Abstract][Full Text] [Related]
33. Novel sources of β-glucanase for the enzymatic degradation of schizophyllan. Sutivisedsak N; Leathers TD; Bischoff KM; Nunnally MS; Peterson SW Enzyme Microb Technol; 2013 Mar; 52(3):203-10. PubMed ID: 23410934 [TBL] [Abstract][Full Text] [Related]
34. Metabolic flux and transcriptome analyses provide insights into the mechanism underlying zinc sulfate improved β-1,3-D-glucan production by Aureobasidium pullulans. Zhang G; Wang G; Zhu C; Wang C; Wang D; Wei G Int J Biol Macromol; 2020 Dec; 164():140-148. PubMed ID: 32682036 [TBL] [Abstract][Full Text] [Related]
35. Characterization and enzymatic hydrolysis of hydrothermally treated β-1,3-1,6-glucan from Aureobasidium pullulans. Hirabayashi K; Kondo N; Hayashi S World J Microbiol Biotechnol; 2016 Dec; 32(12):206. PubMed ID: 27804105 [TBL] [Abstract][Full Text] [Related]
36. Activation of the complement system by (1----3)-beta-D-glucans having different degrees of branching and different ultrastructures. Suzuki T; Ohno N; Saito K; Yadomae T J Pharmacobiodyn; 1992 Jun; 15(6):277-85. PubMed ID: 1432567 [TBL] [Abstract][Full Text] [Related]
38. Structural and biological study of carboxymethylated Phellinus linteus polysaccharides. Shin JY; Lee S; Bae IY; Yoo SH; Lee HG J Agric Food Chem; 2007 May; 55(9):3368-72. PubMed ID: 17394330 [TBL] [Abstract][Full Text] [Related]
39. Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation. Wang ZJ; Xie JH; Shen MY; Tang W; Wang H; Nie SP; Xie MY Carbohydr Polym; 2016 Jan; 136():988-94. PubMed ID: 26572438 [TBL] [Abstract][Full Text] [Related]
40. Structural characterisation and biological activities of a unique type beta-D-glucan obtained from Aureobasidium pullulans. Tada R; Tanioka A; Iwasawa H; Hatashima K; Shoji Y; Ishibashi K; Adachi Y; Yamazaki M; Tsubaki K; Ohno N Glycoconj J; 2008 Dec; 25(9):851-61. PubMed ID: 18587644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]