These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37839849)
1. Efficient extraction of nanocellulose from lignocellulose using aqueous butanediol fractionation to improve the performance of waterborne wood coating. Song X; Zhu Z; Tang S; Chi X; Han G; Cheng W Carbohydr Polym; 2023 Dec; 322():121347. PubMed ID: 37839849 [TBL] [Abstract][Full Text] [Related]
2. Efficient downstream valorization of lignocellulose after organosolv fractionation: Synergistic enhancement of waterborne coatings by co-assembled lignin@cellulose nanocrystals. Song X; Zhu Z; Chi X; Tang S; Han G; Cheng W Int J Biol Macromol; 2023 Feb; 227():1325-1335. PubMed ID: 36470442 [TBL] [Abstract][Full Text] [Related]
3. Preparation of nanocellulose in high yield via chemi-mechanical synergy. Wang J; Xu J; Zhu S; Wu Q; Li J; Gao Y; Wang B; Li J; Gao W; Zeng J; Chen K Carbohydr Polym; 2021 Jan; 251():117094. PubMed ID: 33142632 [TBL] [Abstract][Full Text] [Related]
4. Nanocellulose-Reinforced Polyurethane for Waterborne Wood Coating. Kong L; Xu D; He Z; Wang F; Gui S; Fan J; Pan X; Dai X; Dong X; Liu B; Li Y Molecules; 2019 Aug; 24(17):. PubMed ID: 31470628 [TBL] [Abstract][Full Text] [Related]
5. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Liu S; Zhang Q; Gou S; Zhang L; Wang Z Carbohydr Polym; 2021 Jan; 251():117018. PubMed ID: 33142579 [TBL] [Abstract][Full Text] [Related]
6. Nanocrystalline cellulose derived from spruce wood: Influence of process parameters. Kumar P; Miller K; Kermanshahi-Pour A; Brar SK; Beims RF; Xu CC Int J Biol Macromol; 2022 Nov; 221():426-434. PubMed ID: 36084872 [TBL] [Abstract][Full Text] [Related]
7. Performance of Advanced Waterborne Wood Coatings Reinforced with Cellulose Nanocrystals. Khan MN; Clarkson CM; Nuruddin M; Sharif A; Ahmad E; Youngblood JP ACS Appl Bio Mater; 2022 Aug; ():. PubMed ID: 35993822 [TBL] [Abstract][Full Text] [Related]
8. Zirconium Phosphate Assisted Phosphoric Acid Co-Catalyzed Hydrolysis of Lignocellulose for Enhanced Extraction of Nanocellulose. Wang H; Wu J; Lian Y; Li Y; Huang B; Lu Q Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679327 [TBL] [Abstract][Full Text] [Related]
9. Emulsion Stabilization with Functionalized Cellulose Nanoparticles Fabricated Using Deep Eutectic Solvents. Ojala J; Visanko M; Laitinen O; Österberg M; Sirviö JA; Liimatainen H Molecules; 2018 Oct; 23(11):. PubMed ID: 30366392 [TBL] [Abstract][Full Text] [Related]
10. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235 [TBL] [Abstract][Full Text] [Related]
11. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Bai L; Liu Y; Ding A; Ren N; Li G; Liang H Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545 [TBL] [Abstract][Full Text] [Related]
12. Cellulose Nanocrystals vs. Cellulose Nanofibers: A Comparative Study of Reinforcing Effects in UV-Cured Vegetable Oil Nanocomposites. Barkane A; Kampe E; Platnieks O; Gaidukovs S Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361176 [TBL] [Abstract][Full Text] [Related]
13. Preparation of nanocellulose by a biological method from hemp stalk in contrast to the chemical method and its application on the electrospun composite film. Zhang X; Guo J; Liu Y; Hao X; Yao Q; Xu Y; Guo Y J Mater Chem B; 2023 May; 11(19):4191-4202. PubMed ID: 37128714 [TBL] [Abstract][Full Text] [Related]
14. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs. Jun D; Guomin Z; Mingzhu P; Leilei Z; Dagang L; Rui Z Carbohydr Polym; 2017 Jul; 168():255-262. PubMed ID: 28457448 [TBL] [Abstract][Full Text] [Related]
15. Isolation of Mixed Compositions of Cellulose Nanocrystals, Microcrystalline Cellulose, and Lignin Nanoparticles from Wood Pulps. Abitbol T; Kubat M; Brännvall E; Kotov N; Johnson CM; Nizamov R; Nyberg M; Miettunen K; Nordgren N; Stevanic JS; Guerreiro MP ACS Omega; 2023 Jun; 8(24):21474-21484. PubMed ID: 37360452 [TBL] [Abstract][Full Text] [Related]
16. Enzymatically produced cellulose nanocrystals as reinforcement for waterborne polyurethane and its applications. Alonso-Lerma B; Larraza I; Barandiaran L; Ugarte L; Saralegi A; Corcuera MA; Perez-Jimenez R; Eceiza A Carbohydr Polym; 2021 Feb; 254():117478. PubMed ID: 33357930 [TBL] [Abstract][Full Text] [Related]
17. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. Patel DK; Dutta SD; Lim KT RSC Adv; 2019 Jun; 9(33):19143-19162. PubMed ID: 35516880 [TBL] [Abstract][Full Text] [Related]
18. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy. Kotov N; Larsson PA; Jain K; Abitbol T; Cernescu A; Wågberg L; Johnson CM Carbohydr Polym; 2023 Feb; 302():120320. PubMed ID: 36604038 [TBL] [Abstract][Full Text] [Related]
19. Nanocellulose Grades with Different Morphologies and Surface Modification as Additives for Waterborne Epoxy Coatings. Samyn P; Cosemans P Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675014 [TBL] [Abstract][Full Text] [Related]
20. Process design for acidic and alcohol based deep eutectic solvent pretreatment and high pressure homogenization of palm bunches for nanocellulose production. Sonyeam J; Chaipanya R; Suksomboon S; Khan MJ; Amatariyakul K; Wibowo A; Posoknistakul P; Charnnok B; Liu CG; Laosiripojana N; Sakdaronnarong C Sci Rep; 2024 Mar; 14(1):7550. PubMed ID: 38555319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]