These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37840082)
1. Investigation on preventive inerting approach of coal spontaneous combustion in gob considering adsorption effect. Fang X; Tan B; Wang H; Wang F; Shao ZZ; Xu C; Zheng S Environ Sci Pollut Res Int; 2023 Nov; 30(52):112892-112907. PubMed ID: 37840082 [TBL] [Abstract][Full Text] [Related]
2. Study on Nitrogen Injection Fire Prevention and Extinguishing Technology in Spontaneous Combustion Gob Based on Gob-Side Entry Retaining. Zhou X; Jing Z; Li Y; Bai G ACS Omega; 2023 Aug; 8(33):30569-30577. PubMed ID: 37636922 [TBL] [Abstract][Full Text] [Related]
3. Dynamic distribution and prevention of spontaneous combustion of coal in gob-side entry retaining goaf. Hu D; Li Z PLoS One; 2022; 17(5):e0267631. PubMed ID: 35622814 [TBL] [Abstract][Full Text] [Related]
4. Research on the technology of uniformly injecting nitrogen into the porous long pipes in the gob of the gob-side entry retaining mining mode with roof cutting and pressure relief. Jing Z; Zhou X; Li Y; Bai G; Zhang S Sci Rep; 2024 Aug; 14(1):18205. PubMed ID: 39107367 [TBL] [Abstract][Full Text] [Related]
5. Continuous monitoring system of gob temperature and its application. Qin Y; Yan L; Liu W; Xu H; Song Y; Guo W Environ Sci Pollut Res Int; 2022 Jul; 29(35):53063-53075. PubMed ID: 35279753 [TBL] [Abstract][Full Text] [Related]
6. Study on Multipoint and Zoning Coordinated Prevention of Gas and Coal Spontaneous Combustion in Highly Gassy and Spontaneous Combustion-Prone Coal Seam. Zhang C; Jiao D; Zhang M; Huang G ACS Omega; 2022 May; 7(20):17305-17329. PubMed ID: 35647430 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of permeability model construction and risk fields evaluation by roof cutting along the gob in a coal mine. Liu J; Li D; Chen X; Wang L; Wang S Environ Sci Pollut Res Int; 2024 Jan; 31(5):7073-7091. PubMed ID: 38157177 [TBL] [Abstract][Full Text] [Related]
8. Distribution of spontaneous combustion three zones and optimization of nitrogen injection location in the goaf of a fully mechanized top coal caving face. Qi Y; Wang W; Qi Q; Ning Z; Yao Y PLoS One; 2021; 16(9):e0256911. PubMed ID: 34543303 [TBL] [Abstract][Full Text] [Related]
9. Optimization of key parameters for continuous and precise nitrogen injection in goaf based on response surface methodology. Zhu H; Hu L; Qu B; Liao Q; Tian C; Song X; Fang X; Zhang X Environ Sci Pollut Res Int; 2023 Mar; 30(14):40189-40205. PubMed ID: 36607573 [TBL] [Abstract][Full Text] [Related]
10. Study on multi field coupling numerical simulation of nitrogen injection in goaf and fire-fighting technology. Wang W; Qi Y; Liu J Sci Rep; 2022 Oct; 12(1):17399. PubMed ID: 36253385 [TBL] [Abstract][Full Text] [Related]
11. Spatio-temporal evolution law of gas-temperature coupling field in "110 method" goaf and prevention of spontaneous combustion. Wei S; Fang Z; Li Z; Liu Y; Hu D; Miao C; Wang H PLoS One; 2023; 18(11):e0293829. PubMed ID: 37983275 [TBL] [Abstract][Full Text] [Related]
12. Characteristics and Safety of CO Si J; Li L; Cheng G; Shao H; Wang Y; Li Z ACS Omega; 2021 Jul; 6(28):18518-18526. PubMed ID: 34308082 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application. Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762 [TBL] [Abstract][Full Text] [Related]
14. Research on complex air leakage method to prevent coal spontaneous combustion in longwall goaf. Wang K; Tang H; Wang F; Miao Y; Liu D PLoS One; 2019; 14(3):e0213101. PubMed ID: 30822333 [TBL] [Abstract][Full Text] [Related]
15. Optimization of techniques for the extinction and prevention of coal fires produced in final walls as a result of spontaneous combustion in the Cerrejón mine-Colombia. Bustamante Rúa MO; Bustamante Baena P; Daza Aragón AJ Environ Sci Pollut Res Int; 2018 Nov; 25(32):32515-32523. PubMed ID: 30238260 [TBL] [Abstract][Full Text] [Related]
16. Prediction of spontaneous coal combustion tendency using multinomial logistic regression. Kursunoglu N; Gogebakan M Int J Occup Saf Ergon; 2022 Dec; 28(4):2000-2009. PubMed ID: 34144657 [TBL] [Abstract][Full Text] [Related]
17. Impact of heat and mass transfer during the transport of nitrogen in coal porous media on coal mine fires. Shi B; Zhou F ScientificWorldJournal; 2014; 2014():293142. PubMed ID: 25054173 [TBL] [Abstract][Full Text] [Related]
18. Research on Initial Prevention of Spontaneous Combustion in Coal Bunkers Based on Fire-Extinguishing and Fireproof Inerting. Tan B; Li X; Zhang X; Zhang Z; Zhang H ACS Omega; 2022 Feb; 7(4):3359-3368. PubMed ID: 35128246 [TBL] [Abstract][Full Text] [Related]
19. Assessment of coal spontaneous combustion index gas under different oxygen concentration environment: an experimental study. Jia X; Wu J; Lian C; Rao J Environ Sci Pollut Res Int; 2022 Dec; 29(58):87257-87267. PubMed ID: 35804231 [TBL] [Abstract][Full Text] [Related]
20. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Kong B; Li Z; Yang Y; Liu Z; Yan D Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]