These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37840100)

  • 1. Feasibility of UTE-MRI-based radiomics model for prediction of histopathologic subtype of lung adenocarcinoma: in comparison with CT-based radiomics model.
    Lee S; Lee CY; Kim NY; Suh YJ; Lee HJ; Yong HS; Kim HR; Kim YJ
    Eur Radiol; 2024 May; 34(5):3422-3430. PubMed ID: 37840100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction.
    Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M
    Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An [
    Meng N; Feng P; Yu X; Wu Y; Fu F; Li Z; Luo Y; Tan H; Yuan J; Yang Y; Wang Z; Wang M
    Eur Radiol; 2024 Jan; 34(1):318-329. PubMed ID: 37530809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combination of radiomic features, clinic characteristics, and serum tumor biomarkers to predict the possibility of the micropapillary/solid component of lung adenocarcinoma.
    Xing X; Li L; Sun M; Zhu X; Feng Y
    Ther Adv Respir Dis; 2024; 18():17534666241249168. PubMed ID: 38757628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of solid and micropapillary components in lung invasive adenocarcinoma: radiomics analysis from high-spatial-resolution CT data with 1024 matrix.
    Ninomiya K; Yanagawa M; Tsubamoto M; Sato Y; Suzuki Y; Hata A; Kikuchi N; Yoshida Y; Yamagata K; Doi S; Ogawa R; Tokuda Y; Kido S; Tomiyama N
    Jpn J Radiol; 2024 Jun; 42(6):590-598. PubMed ID: 38413550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas.
    Yoon J; Suh YJ; Han K; Cho H; Lee HJ; Hur J; Choi BW
    Thorac Cancer; 2020 Apr; 11(4):993-1004. PubMed ID: 32043309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Value of contrast-enhanced magnetic resonance imaging-T2WI-based radiomic features in distinguishing lung adenocarcinoma from lung squamous cell carcinoma with solid components >8 mm.
    Yang M; Shi L; Huang T; Li G; Shao H; Shen Y; Zhu J; Ni B
    J Thorac Dis; 2023 Feb; 15(2):635-648. PubMed ID: 36910079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting micropapillary or solid pattern of lung adenocarcinoma with CT-based radiomics, conventional radiographic and clinical features.
    Wang Z; Zhang N; Liu J; Liu J
    Respir Res; 2023 Nov; 24(1):282. PubMed ID: 37964254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An individualised radiomics composite model predicting prognosis of stage 1 solid lung adenocarcinoma.
    Chen H; Liang M; Li X; Wu T; Zhang L; Liu X
    Clin Radiol; 2020 Jul; 75(7):562.e11-562.e19. PubMed ID: 32307110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of predominant subtypes of lung adenocarcinoma using a quantitative radiomics approach on CT.
    Park S; Lee SM; Noh HN; Hwang HJ; Kim S; Do KH; Seo JB
    Eur Radiol; 2020 Sep; 30(9):4883-4892. PubMed ID: 32300970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed Tomography Radiomics for Preoperative Prediction of Spread Through Air Spaces in the Early Stage of Surgically Resected Lung Adenocarcinomas.
    Suh YJ; Han K; Kwon Y; Kim H; Lee S; Hwang SH; Kim MH; Shin HJ; Lee CY; Shim HS
    Yonsei Med J; 2024 Mar; 65(3):163-173. PubMed ID: 38373836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients.
    Sugai Y; Kadoya N; Tanaka S; Tanabe S; Umeda M; Yamamoto T; Takeda K; Dobashi S; Ohashi H; Takeda K; Jingu K
    Radiat Oncol; 2021 Apr; 16(1):80. PubMed ID: 33931085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical characteristics and MRI based radiomics nomograms can predict iPFS and short-term efficacy of third-generation EGFR-TKI in EGFR-mutated lung adenocarcinoma with brain metastases.
    Qi H; Hou Y; Zheng Z; Zheng M; Qiao Q; Wang Z; Sun X; Xing L
    BMC Cancer; 2024 Mar; 24(1):362. PubMed ID: 38515096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical value of a differentiation prediction model for invasive lung adenocarcinoma].
    Shan WL; Kong D; Zhang H; Zhang JD; Duan SF; Guo LL
    Zhonghua Zhong Liu Za Zhi; 2022 Jul; 44(7):767-775. PubMed ID: 35880343
    [No Abstract]   [Full Text] [Related]  

  • 15. Pancreatic ductal adenocarcinoma: a radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection.
    Xie T; Wang X; Li M; Tong T; Yu X; Zhou Z
    Eur Radiol; 2020 May; 30(5):2513-2524. PubMed ID: 32006171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma.
    Nie P; Yang G; Wang N; Yan L; Miao W; Duan Y; Wang Y; Gong A; Zhao Y; Wu J; Zhang C; Wang M; Cui J; Yu M; Li D; Sun Y; Wang Y; Wang Z
    Eur J Nucl Med Mol Imaging; 2021 Jan; 48(1):217-230. PubMed ID: 32451603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomic signature of the FOWARC trial predicts pathological response to neoadjuvant treatment in rectal cancer.
    Zhuang Z; Liu Z; Li J; Wang X; Xie P; Xiong F; Hu J; Meng X; Huang M; Deng Y; Lan P; Yu H; Luo Y
    J Transl Med; 2021 Jun; 19(1):256. PubMed ID: 34112180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.
    Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J
    Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?
    Wang X; Zhao X; Li Q; Xia W; Peng Z; Zhang R; Li Q; Jian J; Wang W; Tang Y; Liu S; Gao X
    Eur Radiol; 2019 Nov; 29(11):6049-6058. PubMed ID: 30887209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules.
    Chen X; Feng B; Chen Y; Liu K; Li K; Duan X; Hao Y; Cui E; Liu Z; Zhang C; Long W; Liu X
    Cancer Imaging; 2020 Jul; 20(1):45. PubMed ID: 32641166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.