These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37840778)

  • 81. Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction.
    Li P; Yang Z; Shen J; Nie H; Cai Q; Li L; Ge M; Gu C; Chen X; Yang K; Zhang L; Chen Y; Huang S
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3543-50. PubMed ID: 26765150
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media.
    Zhang Y; Yun S; Sun M; Wang X; Zhang L; Dang J; Yang C; Yang J; Dang C; Yuan S
    J Colloid Interface Sci; 2021 Dec; 604():441-457. PubMed ID: 34273781
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Stringing Bimetallic Metal-Organic Framework-Derived Cobalt Phosphide Composite for High-Efficiency Overall Water Splitting.
    Chai L; Hu Z; Wang X; Xu Y; Zhang L; Li TT; Hu Y; Qian J; Huang S
    Adv Sci (Weinh); 2020 Mar; 7(5):1903195. PubMed ID: 32154085
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Rhodium/graphitic-carbon-nitride composite electrocatalyst facilitates efficient hydrogen evolution in acidic and alkaline electrolytes.
    Jiang B; Huang A; Wang T; Shao Q; Zhu W; Liao F; Cheng Y; Shao M
    J Colloid Interface Sci; 2020 Jul; 571():30-37. PubMed ID: 32179306
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cation Modulation of Cobalt Sulfide Supported by Mesopore-Rich Hydrangea-Like Carbon Nanoflower for Oxygen Electrocatalysis.
    Zhang X; Li B; Lan M; Yang S; Xie Q; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18683-18692. PubMed ID: 33856760
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Cobalt-Doped FeSe2-RGO as Highly Active and Stable Electrocatalysts for Hydrogen Evolution Reactions.
    Xu X; Ge Y; Wang M; Zhang Z; Dong P; Baines R; Ye M; Shen J
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18036-42. PubMed ID: 27355432
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media.
    Hu F; Zhu S; Chen S; Li Y; Ma L; Wu T; Zhang Y; Wang C; Liu C; Yang X; Song L; Yang X; Xiong Y
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28639333
    [TBL] [Abstract][Full Text] [Related]  

  • 88. High-Entropy Metal-Organic Frameworks for Highly Reversible Sodium Storage.
    Ma Y; Ma Y; Dreyer SL; Wang Q; Wang K; Goonetilleke D; Omar A; Mikhailova D; Hahn H; Breitung B; Brezesinski T
    Adv Mater; 2021 Aug; 33(34):e2101342. PubMed ID: 34245051
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions.
    Hong YR; Mhin S; Kwon J; Han WS; Song T; Han H
    R Soc Open Sci; 2018 Sep; 5(9):180927. PubMed ID: 30839659
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Universal Sub-Nanoreactor Strategy for Synthesis of Yolk-Shell MoS
    Gong F; Liu Y; Zhao Y; Liu W; Zeng G; Wang G; Zhang Y; Gong L; Liu J
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308091. PubMed ID: 37340794
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Synthetic Strategies toward High Entropy Materials: Atoms-to-Lattices for Maximum Disorder.
    Buckingham MA; Skelton JM; Lewis DJ
    Cryst Growth Des; 2023 Oct; 23(10):6998-7009. PubMed ID: 37808901
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Coordination Engineering of Dual Co, Ni Active Sites in N-Doped Carbon Fostering Reversible Oxygen Electrocatalysis.
    Kumar G; Dey RS
    Inorg Chem; 2023 Aug; 62(33):13519-13529. PubMed ID: 37562977
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Eutectic Synthesis of High-Entropy Metal Phosphides for Electrocatalytic Water Splitting.
    Zhao X; Xue Z; Chen W; Wang Y; Mu T
    ChemSusChem; 2020 Apr; 13(8):2038-2042. PubMed ID: 31981404
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Influence of the Amount of Carbon during the Synthesis of LaFe
    Thomas J; Kunnathulli AP; Vazhayil A; Thomas N
    ACS Omega; 2021 Jul; 6(27):17566-17575. PubMed ID: 34278142
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Pyrite-Type Nanomaterials for Advanced Electrocatalysis.
    Gao MR; Zheng YR; Jiang J; Yu SH
    Acc Chem Res; 2017 Sep; 50(9):2194-2204. PubMed ID: 28825788
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Graphitic Carbon Cloth-Based Hybrid Molecular Catalyst: A Non-conventional, Synthetic Strategy of the Drop Casting Method for a Stable and Bifunctional Electrocatalyst for Enhanced Hydrogen and Oxygen Evolution Reactions.
    Murthy R; Neelakantan SC
    ACS Omega; 2022 Sep; 7(36):32604-32614. PubMed ID: 36120071
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Electrosynthesis of Bifunctional WS
    Tan SM; Pumera M
    Chemistry; 2017 Jun; 23(35):8510-8519. PubMed ID: 28449325
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Colloidal Synthesis of NiWSe Nanosheets for Efficient Electrocatalytic Hydrogen Evolution Reaction in Alkaline Media.
    Zhao Y; Mao G; Du Y; Cheng G; Luo W
    Chem Asian J; 2018 Jun; ():. PubMed ID: 29888868
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Structure Engineering of MoS
    Liu J; Wang Z; Li J; Cao L; Lu Z; Zhu D
    Small; 2020 Jan; 16(4):e1905738. PubMed ID: 31894640
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Bifunctional CuS/Cl-terminated greener MXene electrocatalyst for efficient hydrogen production by water splitting.
    Sarfraz B; Mehran MT; Shahzad F; Hussain S; Naqvi SR; Khan HA; Mahmood K
    RSC Adv; 2023 Jul; 13(32):22017-22028. PubMed ID: 37483669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.