BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37840849)

  • 1. Impact of GAN artifacts for simulating mammograms on identifying mammographically occult cancer.
    Lee J; Mustafaev T; Nishikawa RM
    J Med Imaging (Bellingham); 2023 Sep; 10(5):054503. PubMed ID: 37840849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Women With Mammographically- Occult Breast Cancer Leveraging GAN-Simulated Mammograms.
    Lee J; Nishikawa RM
    IEEE Trans Med Imaging; 2022 Jan; 41(1):225-236. PubMed ID: 34460371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving lesion detection in mammograms by leveraging a Cycle-GAN-based lesion remover.
    Lee J; Nishikawa RM
    Breast Cancer Res; 2024 Feb; 26(1):21. PubMed ID: 38303004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting mammographically occult cancer in women with dense breasts using deep convolutional neural network and Radon Cumulative Distribution Transform.
    Lee J; Nishikawa RM
    J Med Imaging (Bellingham); 2019 Oct; 6(4):044502. PubMed ID: 31890746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks.
    Guan S; Loew M
    J Med Imaging (Bellingham); 2019 Jul; 6(3):031411. PubMed ID: 30915386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network.
    Zhou Y; Wei J; Wu D; Zhang Y
    Front Oncol; 2022; 12():868257. PubMed ID: 35574397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving reproducibility and performance of radiomics in low-dose CT using cycle GANs.
    Chen J; Wee L; Dekker A; Bermejo I
    J Appl Clin Med Phys; 2022 Oct; 23(10):e13739. PubMed ID: 35906893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generative adversarial network for synthetization of regions of interest based on digital mammograms.
    Oyelade ON; Ezugwu AE; Almutairi MS; Saha AK; Abualigah L; Chiroma H
    Sci Rep; 2022 Apr; 12(1):6166. PubMed ID: 35418566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection.
    Garrucho L; Kushibar K; Osuala R; Diaz O; Catanese A; Del Riego J; Bobowicz M; Strand F; Igual L; Lekadir K
    Front Oncol; 2022; 12():1044496. PubMed ID: 36755853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serial dependence in perception across naturalistic generative adversarial network-generated mammogram.
    Ren Z; Canas-Bajo T; Ghirardo C; Manassi M; Yu SX; Whitney D
    J Med Imaging (Bellingham); 2023 Jul; 10(4):045501. PubMed ID: 37408983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion of Heterogeneous Adversarial Networks for Single Image Dehazing.
    Park J; Han DK; Ko H
    IEEE Trans Image Process; 2020 Feb; ():. PubMed ID: 32142439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Automated Breast Density Segmentation and Classification Using Deep Learning.
    Saffari N; Rashwan HA; Abdel-Nasser M; Kumar Singh V; Arenas M; Mangina E; Herrera B; Puig D
    Diagnostics (Basel); 2020 Nov; 10(11):. PubMed ID: 33238512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis.
    Müller-Franzes G; Niehues JM; Khader F; Arasteh ST; Haarburger C; Kuhl C; Wang T; Han T; Nolte T; Nebelung S; Kather JN; Truhn D
    Sci Rep; 2023 Jul; 13(1):12098. PubMed ID: 37495660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion artifact removal in coronary CT angiography based on generative adversarial networks.
    Zhang L; Jiang B; Chen Q; Wang L; Zhao K; Zhang Y; Vliegenthart R; Xie X
    Eur Radiol; 2023 Jan; 33(1):43-53. PubMed ID: 35829786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A REAL-TIME MEDICAL ULTRASOUND SIMULATOR BASED ON A GENERATIVE ADVERSARIAL NETWORK MODEL.
    Peng B; Huang X; Wang S; Jiang J
    Proc Int Conf Image Proc; 2019 Sep; 2019():4629-4633. PubMed ID: 33795977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative Adversarial Networks: A Primer for Radiologists.
    Wolterink JM; Mukhopadhyay A; Leiner T; Vogl TJ; Bucher AM; Išgum I
    Radiographics; 2021; 41(3):840-857. PubMed ID: 33891522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of General Adversarial Networks in Mammogram Analysis: A Review.
    Gopal A; Gandhimaruthian L; Ali J
    Curr Med Imaging; 2020; 16(7):863-877. PubMed ID: 33059556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.