BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37841126)

  • 1. Simulation Study on Molecular Behavior of Rhamnolipids and Biobased Zwitterionic Surfactants at the Oil/Water Interface: Effect of Rhamnose Moiety Structures.
    Zhang Y; Xiu J; Yi L; Liao G; Yu L; Huang L
    ACS Omega; 2023 Oct; 8(40):36655-36661. PubMed ID: 37841126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Classical Molecular Dynamics Simulation Study of Interfacial and Bulk Solution Aggregation Properties of Dirhamnolipids.
    Luft CM; Munusamy E; Pemberton JE; Schwartz SD
    J Phys Chem B; 2020 Feb; 124(5):814-827. PubMed ID: 31958226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergism and aggregation behaviour in an aqueous binary mixture of cationic-zwitterionic surfactants: physico-chemical characterization with molecular simulation approach.
    Kanoje B; Padshala S; Parikh J; Sahoo SK; Kuperkar K; Bahadur P
    Phys Chem Chem Phys; 2017 Dec; 20(1):670-681. PubMed ID: 29227489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes.
    Zhang Y; Miller RM
    Appl Environ Microbiol; 1995 Jun; 61(6):2247-51. PubMed ID: 16535047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic Solubilization of Phenanthrene by Mixed Micelles Composed of Biosurfactants and a Conventional Non-Ionic Surfactant.
    Liu J; Wang Y; Li H
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32967248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent Interfacial Tension and Dilatational Modulus Synergism of Oil-Soluble Fatty Acid and Water-Soluble Cationic Surfactants at the Oil/Water Interface.
    Hsieh TL; Law S; Garoff S; Tilton RD
    Langmuir; 2021 Oct; 37(39):11573-11581. PubMed ID: 34554763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Ca
    Lang JQ; Mtui HI; Gang HZ; Mu BZ; Yang SZ
    ACS Omega; 2022 Sep; 7(36):32775-32783. PubMed ID: 36120073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhamnolipid biosurfactant mixtures for environmental remediation.
    Nguyen TT; Youssef NH; McInerney MJ; Sabatini DA
    Water Res; 2008 Mar; 42(6-7):1735-43. PubMed ID: 18035390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong synergistic interactions in zwitterionic-anionic surfactant mixtures at the air-water interface and in micelles: The role of steric and electrostatic interactions.
    Ma K; Li P; Wang Z; Chen Y; Campana M; Doutch J; Dalgliesh R; Maestro A; Thomas RK; Penfold J
    J Colloid Interface Sci; 2022 May; 613():297-310. PubMed ID: 35042030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of calcium ions on rhamnolipid and rhamnolipid/anionic surfactant adsorption and self-assembly.
    Chen M; Dong C; Penfold J; Thomas RK; Smyth TJ; Perfumo A; Marchant R; Banat IM; Stevenson P; Parry A; Tucker I; Grillo I
    Langmuir; 2013 Mar; 29(12):3912-23. PubMed ID: 23445348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effects of surfactants and heterogeneous nanoparticles at oil-water interface: Insights from computations.
    Vu TV; Papavassiliou DV
    J Colloid Interface Sci; 2019 Oct; 553():50-58. PubMed ID: 31185383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulation of the Effects of Complex Surfactants on Oil-Water Interaction and Aggregation Characteristics at the Interface.
    Xian X; Ye Z; Tang L; Wang J; Lai N; Xiao B; Wang Z; Li S
    Langmuir; 2023 Oct; 39(39):14130-14138. PubMed ID: 37726897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation study of adsorption of anionic-nonionic surfactants at oil/water interfaces.
    Shi P; Luo H; Tan X; Lu Y; Zhang H; Yang X
    RSC Adv; 2022 Sep; 12(42):27330-27343. PubMed ID: 36276041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhamnolipid Micellization and Adsorption Properties.
    Zhang Y; Placek TL; Jahan R; Alexandridis P; Tsianou M
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial properties of branch-tailed fluorinated surfactants yielding a water/supercritical CO2 microemulsion.
    Sagisaka M; Fujii T; Ozaki Y; Yoda S; Takebayashi Y; Kondo Y; Yoshino N; Sakai H; Abe M; Otake K
    Langmuir; 2004 Mar; 20(7):2560-6. PubMed ID: 15835124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Congener-dependent conformations of isolated rhamnolipids at the vacuum-water interface: A molecular dynamics simulation.
    Euston SR; Banat IM; Salek K
    J Colloid Interface Sci; 2021 Mar; 585():148-157. PubMed ID: 33279697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiments, molecular dynamics simulations, and quantum chemistry calculations on the effect of gemini surfactants' headgroup on the oil-water interfacial tension.
    Yan Z; Wu Y; Zhao M; Yu L; Zhang S
    Soft Matter; 2023 Aug; 19(32):6122-6130. PubMed ID: 37540072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Interfacial Dilational Rheology Properties of Betaine Solutions: Effect of Anionic Surfactant and Polymer.
    Li H; Cui C; Cao X; Yuan F; Xu Z; Zhang L; Zhang L
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microrheological study of ternary surfactant-biosurfactant mixtures.
    Xu L; Amin S
    Int J Cosmet Sci; 2019 Aug; 41(4):364-370. PubMed ID: 31099406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.