These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37841207)
1. Compact and modular system architecture for a nano-resonator-mass spectrometer. Reynaud A; Trzpil W; Dartiguelongue L; Çumaku V; Fortin T; Sansa M; Hentz S; Masselon C Front Chem; 2023; 11():1238674. PubMed ID: 37841207 [TBL] [Abstract][Full Text] [Related]
2. Atmospheric Pressure Mass Spectrometry of Single Viruses and Nanoparticles by Nanoelectromechanical Systems. Erdogan RT; Alkhaled M; Kaynak BE; Alhmoud H; Pisheh HS; Kelleci M; Karakurt I; Yanik C; Şen ZB; Sari B; Yagci AM; Özkul A; Hanay MS ACS Nano; 2022 Mar; 16(3):3821-3833. PubMed ID: 35785967 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear Nanomechanical Mass Spectrometry at the Single-Nanoparticle Level. Yuksel M; Orhan E; Yanik C; Ari AB; Demir A; Hanay MS Nano Lett; 2019 Jun; 19(6):3583-3589. PubMed ID: 31117750 [TBL] [Abstract][Full Text] [Related]
4. Atmospheric-Pressure Mass Spectrometry by Single-Mode Nanoelectromechanical Systems. Kaynak BE; Alkhaled M; Kartal E; Yanik C; Hanay MS Nano Lett; 2023 Sep; 23(18):8553-8559. PubMed ID: 37681677 [TBL] [Abstract][Full Text] [Related]
5. Requirements and attributes of nano-resonator mass spectrometry for the analysis of intact viral particles. Clement K; Reynaud A; Defoort M; Vysotskyi B; Fortin T; Lai SH; Çumaku V; Dominguez-Medina S; Hentz S; Masselon C Anal Bioanal Chem; 2021 Dec; 413(29):7147-7156. PubMed ID: 34235570 [TBL] [Abstract][Full Text] [Related]
6. Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. Su Y; Sipin MF; Furutani H; Prather KA Anal Chem; 2004 Feb; 76(3):712-9. PubMed ID: 14750867 [TBL] [Abstract][Full Text] [Related]
7. Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Sage E; Sansa M; Fostner S; Defoort M; Gély M; Naik AK; Morel R; Duraffourg L; Roukes ML; Alava T; Jourdan G; Colinet E; Masselon C; Brenac A; Hentz S Nat Commun; 2018 Aug; 9(1):3283. PubMed ID: 30115919 [TBL] [Abstract][Full Text] [Related]
8. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Canagaratna MR; Jayne JT; Jimenez JL; Allan JD; Alfarra MR; Zhang Q; Onasch TB; Drewnick F; Coe H; Middlebrook A; Delia A; Williams LR; Trimborn AM; Northway MJ; DeCarlo PF; Kolb CE; Davidovits P; Worsnop DR Mass Spectrom Rev; 2007; 26(2):185-222. PubMed ID: 17230437 [TBL] [Abstract][Full Text] [Related]
9. A Hybrid Orbitrap-Nanoelectromechanical Systems Approach for the Analysis of Individual, Intact Proteins in Real Time. Neumann AP; Sage E; Boll D; Reinhardt-Szyba M; Fon W; Masselon C; Hentz S; Sader JE; Makarov A; Roukes ML Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202317064. PubMed ID: 38769756 [TBL] [Abstract][Full Text] [Related]
10. An aerodynamic assisted miniature mass spectrometer for enhanced volatile sample analysis. Zhai Y; Jiang T; Huang G; Wei Y; Xu W Analyst; 2016 Sep; 141(18):5404-11. PubMed ID: 27379359 [TBL] [Abstract][Full Text] [Related]
11. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Dominguez-Medina S; Fostner S; Defoort M; Sansa M; Stark AK; Halim MA; Vernhes E; Gely M; Jourdan G; Alava T; Boulanger P; Masselon C; Hentz S Science; 2018 Nov; 362(6417):918-922. PubMed ID: 30467165 [TBL] [Abstract][Full Text] [Related]
13. Quantification and evaluation of ion transmission efficiency in two-stage vacuum chamber miniature mass spectrometer. Guo C; Diao Z; Liu J; Yang B; Zhang J J Mass Spectrom; 2022 Mar; 57(3):e4816. PubMed ID: 35229406 [TBL] [Abstract][Full Text] [Related]
14. Selective detection and characterization of nanoparticles from motor vehicles. Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN; Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271 [TBL] [Abstract][Full Text] [Related]
15. Disintegration of nano-embedded microparticles after deposition on mucus: A mechanistic study. Ruge CA; Bohr A; Beck-Broichsitter M; Nicolas V; Tsapis N; Fattal E Colloids Surf B Biointerfaces; 2016 Mar; 139():219-27. PubMed ID: 26720142 [TBL] [Abstract][Full Text] [Related]
16. Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air. Stachiv I; Gan L; Kuo CY; Šittner P; Ševeček O ACS Sens; 2020 Jul; 5(7):2128-2135. PubMed ID: 32551518 [TBL] [Abstract][Full Text] [Related]
17. Performance evaluation of a dual linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer for proteomics research. Weisbrod CR; Hoopmann MR; Senko MW; Bruce JE J Proteomics; 2013 Aug; 88():109-19. PubMed ID: 23590889 [TBL] [Abstract][Full Text] [Related]
18. Suspended Nanochannel Resonator Arrays with Piezoresistive Sensors for High-Throughput Weighing of Nanoparticles in Solution. Gagino M; Katsikis G; Olcum S; Virot L; Cochet M; Thuaire A; Manalis SR; Agache V ACS Sens; 2020 Apr; 5(4):1230-1238. PubMed ID: 32233476 [TBL] [Abstract][Full Text] [Related]
19. Highly versatile laboratory X-ray scattering instrument enabling (nano-)material structure analysis on multiple length scales by covering a scattering vector range of almost five decades. Bolze J; Gateshki M Rev Sci Instrum; 2019 Dec; 90(12):123103. PubMed ID: 31893848 [TBL] [Abstract][Full Text] [Related]