These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37841604)

  • 21. Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9.
    El-Mounadi K; Morales-Floriano ML; Garcia-Ruiz H
    Front Plant Sci; 2020; 11():56. PubMed ID: 32117392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives.
    Wang Y; Zafar N; Ali Q; Manghwar H; Wang G; Yu L; Ding X; Ding F; Hong N; Wang G; Jin S
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome Editing in Cereals: Approaches, Applications and Challenges.
    Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9 System: A Potential Tool for Genetic Improvement in Floricultural Crops.
    Sirohi U; Kumar M; Sharma VR; Teotia S; Singh D; Chaudhary V; Priya ; Yadav MK
    Mol Biotechnol; 2022 Dec; 64(12):1303-1318. PubMed ID: 35751797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants.
    Kumar M; Prusty MR; Pandey MK; Singh PK; Bohra A; Guo B; Varshney RK
    Front Plant Sci; 2023; 14():1157678. PubMed ID: 37143874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals.
    Sharma P; Pandey A; Malviya R; Dey S; Karmakar S; Gayen D
    Front Genome Ed; 2023; 5():1094965. PubMed ID: 36911238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture.
    Khanna K; Ohri P; Bhardwaj R
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118049-118064. PubMed ID: 36973619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The changing landscape of agriculture: role of precision breeding in developing smart crops.
    Chaudhry A; Hassan AU; Khan SH; Abbasi A; Hina A; Khan MT; Abdelsalam NR
    Funct Integr Genomics; 2023 May; 23(2):167. PubMed ID: 37204621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives.
    Ahmar S; Hensel G; Gruszka D
    Biotechnol Adv; 2023 Dec; 69():108248. PubMed ID: 37666372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted modification of
    Nonaka S; Ito M; Ezura H
    Front Genome Ed; 2023; 5():1176125. PubMed ID: 37304010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas system: A revolutionary tool for crop improvement.
    Mishra A; Pandey VP
    Biotechnol J; 2024 Feb; 19(2):e2300298. PubMed ID: 38403466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants.
    Yadav RK; Tripathi MK; Tiwari S; Tripathi N; Asati R; Chauhan S; Tiwari PN; Payasi DK
    Life (Basel); 2023 Jun; 13(7):. PubMed ID: 37511831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update.
    Chaudhary M; Mukherjee TK; Singh R; Gupta M; Goyal S; Singhal P; Kumar R; Bhusal N; Sharma P
    Mol Biol Rep; 2022 Jul; 49(7):7101-7110. PubMed ID: 35568789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR for Crop Improvement: An Update Review.
    Jaganathan D; Ramasamy K; Sellamuthu G; Jayabalan S; Venkataraman G
    Front Plant Sci; 2018; 9():985. PubMed ID: 30065734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress.
    Sami A; Xue Z; Tazein S; Arshad A; He Zhu Z; Ping Chen Y; Hong Y; Tian Zhu X; Jin Zhou K
    Bioengineered; 2021 Dec; 12(1):5814-5829. PubMed ID: 34506262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.