These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37841689)
41. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
42. Comparison of subdural and subgaleal recordings of cortical high-gamma activity in humans. Olson JD; Wander JD; Johnson L; Sarma D; Weaver K; Novotny EJ; Ojemann JG; Darvas F Clin Neurophysiol; 2016 Jan; 127(1):277-284. PubMed ID: 25907415 [TBL] [Abstract][Full Text] [Related]
43. Long-term evaluation and feasibility study of the insulated screw electrode for ECoG recording. Choi H; Lee S; Lee J; Min K; Lim S; Park J; Ahn KH; Kim IY; Lee KM; Jang DP J Neurosci Methods; 2018 Oct; 308():261-268. PubMed ID: 29964082 [TBL] [Abstract][Full Text] [Related]
44. When to include ECoG electrode properties in volume conduction models. Vermaas M; Piastra MC; Oostendorp TF; Ramsey NF; Tiesinga PHE J Neural Eng; 2020 Oct; 17(5):056031. PubMed ID: 33055363 [TBL] [Abstract][Full Text] [Related]
45. Optimal spatial resolution of epidural and subdural electrode arrays for brain-machine interface applications. Slutzky MW; Jordan LR; Miller LE Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3771-4. PubMed ID: 19163532 [TBL] [Abstract][Full Text] [Related]
46. Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces. Leuthardt EC; Freudenberg Z; Bundy D; Roland J Neurosurg Focus; 2009 Jul; 27(1):E10. PubMed ID: 19569885 [TBL] [Abstract][Full Text] [Related]
47. A flexible implantable microelectrode array for recording electrocorticography signals from rodents. Chatterjee S; Sakorikar T; Bs A; Joshi RK; Sikaria A; Jayachandra M; V V; Pandya HJ Biomed Microdevices; 2022 Sep; 24(4):31. PubMed ID: 36138255 [TBL] [Abstract][Full Text] [Related]
48. Spatiotemporal compression for efficient storage and transmission of high-resolution electrocorticography data. Kim T; Artan NS; Viventi J; Chao HJ Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1012-5. PubMed ID: 23366066 [TBL] [Abstract][Full Text] [Related]
49. Progress in the Field of Micro-Electrocorticography. Shokoueinejad M; Park DW; Jung YH; Brodnick SK; Novello J; Dingle A; Swanson KI; Baek DH; Suminski AJ; Lake WB; Ma Z; Williams J Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30658503 [TBL] [Abstract][Full Text] [Related]
50. Super multi-channel recording systems with UWB wireless transmitter for BMI. Suzuki T; Ando H; Yoshida T; Sawahata H; Kawasaki K; Hasegawa I; Matsushita K; Hirata M; Yoshimine T; Takizawa K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5208-11. PubMed ID: 25571167 [TBL] [Abstract][Full Text] [Related]
54. Bioresorbable Electrode Array for Electrophysiological and Pressure Signal Recording in the Brain. Xu K; Li S; Dong S; Zhang S; Pan G; Wang G; Shi L; Guo W; Yu C; Luo J Adv Healthc Mater; 2019 Aug; 8(15):e1801649. PubMed ID: 31168937 [TBL] [Abstract][Full Text] [Related]
55. Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment. Xie K; Zhang S; Dong S; Li S; Yu C; Xu K; Chen W; Guo W; Luo J; Wu Z Sci Rep; 2017 Aug; 7(1):7808. PubMed ID: 28798359 [TBL] [Abstract][Full Text] [Related]
56. A novel micro-ECoG recording method for recording multisensory neural activity from the parietal to temporal cortices in mice. Setogawa S; Kanda R; Tada S; Hikima T; Saitoh Y; Ishikawa M; Nakada S; Seki F; Hikishima K; Matsumoto H; Mizuseki K; Fukayama O; Osanai M; Sekiguchi H; Ohkawa N Mol Brain; 2023 May; 16(1):38. PubMed ID: 37138338 [TBL] [Abstract][Full Text] [Related]
57. A convex-shaped, PDMS-parylene hybrid multichannel ECoG-electrode array. Woo-Ram Lee ; Changkyun Im ; Chin Su Koh ; Jun-Min Kim ; Hyung-Cheul Shin ; Jong-Mo Seo Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1093-1096. PubMed ID: 29060065 [TBL] [Abstract][Full Text] [Related]
58. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Henle C; Raab M; Cordeiro JG; Doostkam S; Schulze-Bonhage A; Stieglitz T; Rickert J Biomed Microdevices; 2011 Feb; 13(1):59-68. PubMed ID: 20838900 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of μECoG electrode arrays in the minipig: experimental procedure and neurosurgical approach. Gierthmuehlen M; Ball T; Henle C; Wang X; Rickert J; Raab M; Freiman T; Stieglitz T; Kaminsky J J Neurosci Methods; 2011 Oct; 202(1):77-86. PubMed ID: 21896285 [TBL] [Abstract][Full Text] [Related]