These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37842036)

  • 1. Computer simulation on the cueing movements in cue sports: a validation study.
    Pan JW; Mei Q; Fernandez J; Song H; Komar J; Kong PW
    PeerJ; 2023; 11():e16180. PubMed ID: 37842036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper Extremity and Cue Kinematics, and Shoulder Muscle Electromyographic Activity of Novus Players of Different Skill Levels.
    Talts V; Ereline J; Kums T; Pääsuke M; Gapeyeva H
    J Appl Biomech; 2017 Apr; 33(2):124-129. PubMed ID: 27834563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does enforcing glenohumeral joint stability matter? A new rapid muscle redundancy solver highlights the importance of non-superficial shoulder muscles.
    Belli I; Joshi S; Prendergast JM; Beck I; Della Santina C; Peternel L; Seth A
    PLoS One; 2023; 18(11):e0295003. PubMed ID: 38033021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports.
    Escamilla RF; Andrews JR
    Sports Med; 2009; 39(7):569-90. PubMed ID: 19530752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Shoulder Kinematic Estimate on Joint and Muscle Mechanics Predicted by Musculoskeletal Model.
    Blache Y; Begon M
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):715-722. PubMed ID: 28641241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper extremity coordination strategies depending on task demand during a basic daily activity.
    Ricci FP; Santiago PR; Zampar AC; Pinola LN; Fonseca Mde C
    Gait Posture; 2015 Oct; 42(4):472-8. PubMed ID: 26282047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prescribing joint co-ordinates during model preparation to improve inverse kinematic estimates of elbow joint angles.
    Wells DJ; Alderson JA; Dunne J; Elliott BC; Donnelly CJ
    J Biomech; 2017 Jan; 51():111-117. PubMed ID: 27939351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the external forces and moments at the shoulder and elbow while performing every day tasks.
    Murray IA; Johnson GR
    Clin Biomech (Bristol); 2004 Jul; 19(6):586-94. PubMed ID: 15234482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems.
    Blana D; Hincapie JG; Chadwick EK; Kirsch RF
    J Biomech; 2008; 41(8):1714-21. PubMed ID: 18420213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward and inverse dynamics modeling of human shoulder-arm musculoskeletal system with scapulothoracic constraint.
    Hu T; Kühn J; Haddadin S
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):785-803. PubMed ID: 32552013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.
    Seth A; Matias R; Veloso AP; Delp SL
    PLoS One; 2016; 11(1):e0141028. PubMed ID: 26734761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper extremity kinematics and muscle activation patterns in subjects with facioscapulohumeral dystrophy.
    Bergsma A; Murgia A; Cup EH; Verstegen PP; Meijer K; de Groot IJ
    Arch Phys Med Rehabil; 2014 Sep; 95(9):1731-41. PubMed ID: 24780289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can shoulder joint reaction forces be estimated by neural networks?
    de Vries WHK; Veeger HEJ; Baten CTM; van der Helm FCT
    J Biomech; 2016 Jan; 49(1):73-79. PubMed ID: 26654109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Expertise on Shoulder and Upper Limb Kinematics, Electromyography, and Estimated Muscle Forces During a Lifting Task.
    Goubault E; Martinez R; Assila N; Monga-Dubreuil É; Dowling-Medley J; Dal Maso F; Begon M
    Hum Factors; 2022 Aug; 64(5):800-819. PubMed ID: 33236930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational reverse shoulder prosthesis model: Experimental data and verification.
    Martins A; Quental C; Folgado J; Ambrósio J; Monteiro J; Sarmento M
    J Biomech; 2015 Sep; 48(12):3242-51. PubMed ID: 26206550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.