BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37842133)

  • 1. Super-Resolution in Digital Breast Tomosynthesis: Limitations of the Conventional System Design and Strategies for Optimization.
    Acciavatti RJ; Vent TL; Barufaldi B; Wileyto EP; Noël PB; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2020 May; 11513():. PubMed ID: 37842133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proposing Rapid Source Pulsing for Improved Super-Resolution in Digital Breast Tomosynthesis.
    Acciavatti RJ; Vent TL; Barufaldi B; Wileyto EP; Noël PB; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11312():. PubMed ID: 37927528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Magnification Tomosynthesis for Superior Resolution in Diagnostic Mammography.
    Acciavatti RJ; Vent TL; Choi CJ; Wileyto EP; Noël PB; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2021 Feb; 11595():. PubMed ID: 37701413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oblique reconstructions in tomosynthesis. II. Super-resolution.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111912. PubMed ID: 24320445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of super-resolution and image acquisition on the detection of calcifications in digital breast tomosynthesis.
    Barufaldi B; Acciavatti RJ; Conant EF; Maidment ADA
    Eur Radiol; 2024 Jan; 34(1):193-203. PubMed ID: 37572187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of super-resolution in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2012 Dec; 39(12):7518-39. PubMed ID: 23231301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving Isotropic Super-Resolution with a Non-Isocentric Acquisition Geometry in a Next-Generation Tomosynthesis System.
    Acciavatti RJ; Choi CJ; Vent TL; Barufaldi B; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2022; 12031():. PubMed ID: 37692411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Isocentric Geometry for Next-Generation Tomosynthesis With Super-Resolution.
    Acciavatti RJ; Choi CJ; Vent TL; Barufaldi B; Cohen EA; Wileyto EP; Maidment ADA
    IEEE Trans Med Imaging; 2024 Jan; 43(1):377-391. PubMed ID: 37603482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalization of X-Ray Tube Motion in Digital Breast Tomosynthesis Using Virtual Defrise Phantoms.
    Acciavatti RJ; Barufaldi B; Vent TL; Wileyto EP; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10948():. PubMed ID: 38106641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oblique reconstructions in tomosynthesis. I. Linear systems theory.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111911. PubMed ID: 24320444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Volume Overestimation Artifacts in the Breast Outline Segmentation in Tomosynthesis.
    Acciavatti RJ; Rodríguez-Ruiz A; Vent TL; Bakic PR; Reiser I; Sechopoulos I; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2018 Feb; 10573():. PubMed ID: 38327670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of source blur on digital breast tomosynthesis reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2019 Dec; 46(12):5572-5592. PubMed ID: 31494953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascaded systems analysis of shift-variant image quality in slit-scanning breast tomosynthesis.
    Berggren K; Cederström B; Lundqvist M; Fredenberg E
    Med Phys; 2018 Oct; 45(10):4392-4401. PubMed ID: 30091470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the acquisition geometry in digital tomosynthesis of the breast.
    Sechopoulos I; Ghetti C
    Med Phys; 2009 Apr; 36(4):1199-207. PubMed ID: 19472626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.
    Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z
    Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial dependency of multiplanar reconstruction in digital breast tomosynthesis.
    Choi CJ; Acciavatti RJ; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 37492275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does c-view image quality compare with conventional 2D FFDM?
    Nelson JS; Wells JR; Baker JA; Samei E
    Med Phys; 2016 May; 43(5):2538. PubMed ID: 27147364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.