These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37842823)

  • 1. Differential Shannon entropies and correlation measures for Born-Oppenheimer electron-nuclear dynamics: numerical results and their analytical interpretation.
    Schürger P; Engel V
    Phys Chem Chem Phys; 2023 Oct; 25(41):28373-28381. PubMed ID: 37842823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Shannon Entropies Characterizing Electron-Nuclear Dynamics and Correlation: Momentum-Space Versus Coordinate-Space Wave Packet Motion.
    Schürger P; Engel V
    Entropy (Basel); 2023 Jun; 25(7):. PubMed ID: 37509917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information Theoretical Approach to Coupled Electron-Nuclear Wave Packet Dynamics: Time-Dependent Differential Shannon Entropies.
    Schürger P; Engel V
    J Phys Chem Lett; 2023 Jan; 14(2):334-339. PubMed ID: 36606543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shannon Entropy and Fisher Information from a Non-Born-Oppenheimer Perspective.
    Ludeña EV; Torres FJ; Becerra M; Rincón L; Liu S
    J Phys Chem A; 2020 Jan; 124(2):386-394. PubMed ID: 31846329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated three-dimensional electron-nuclear motion: Adiabatic dynamics vs passage of conical intersections.
    Schaupp T; Engel V
    J Chem Phys; 2022 Feb; 156(7):074302. PubMed ID: 35183098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and nuclear flux dynamics at a conical intersection.
    Schaupp T; Engel V
    J Chem Phys; 2019 Aug; 151(8):084309. PubMed ID: 31470720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.
    Schaupp T; Engel V
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200385. PubMed ID: 35341310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled electron-nuclear quantum dynamics through and around a conical intersection.
    Albert J; Hader K; Engel V
    J Chem Phys; 2017 Aug; 147(6):064302. PubMed ID: 28810792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Born-Oppenheimer electronic and nuclear wavepacket dynamics.
    Yonehara T; Takahashi S; Takatsuka K
    J Chem Phys; 2009 Jun; 130(21):214113. PubMed ID: 19508062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-nuclear correlations for photo-induced dynamics in molecular dimers.
    Kilin DS; Pereversev YV; Prezhdo OV
    J Chem Phys; 2004 Jun; 120(23):11209-23. PubMed ID: 15268151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic Wave Packet Dynamics with Ab Initio Cavity-Born-Oppenheimer Potential Energy Surfaces.
    Schnappinger T; Kowalewski M
    J Chem Theory Comput; 2023 Jan; 19(2):460-71. PubMed ID: 36625723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring dynamical electron theory beyond the Born-Oppenheimer framework: from chemical reactivity to non-adiabatically coupled electronic and nuclear wavepackets on-the-fly under laser field.
    Takatsuka K; Yonehara T
    Phys Chem Chem Phys; 2011 Mar; 13(11):4987-5016. PubMed ID: 21321712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Born-Oppenheimer and non-Born-Oppenheimer contributions to time-dependent electron momenta.
    Schaupp T; Engel V
    J Chem Phys; 2020 May; 152(20):204310. PubMed ID: 32486694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: non-uniqueness of density-derived molecular structure.
    Ludeña EV; Echevarría L; Lopez X; Ugalde JM
    J Chem Phys; 2012 Feb; 136(8):084103. PubMed ID: 22380028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Born-Oppenheimer potential energy curve: Hydrogen molecular ion with highly accurate free complement method.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2013 Aug; 139(7):074105. PubMed ID: 23968070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Time-Dependent Nuclear-Electronic Orbital Approach: Dynamics beyond the Born-Oppenheimer Approximation.
    Zhao L; Tao Z; Pavošević F; Wildman A; Hammes-Schiffer S; Li X
    J Phys Chem Lett; 2020 May; 11(10):4052-4058. PubMed ID: 32251589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled Electron-Nuclear Dynamics on H
    Dey D; Tiwari AK
    J Phys Chem A; 2016 Oct; 120(42):8259-8266. PubMed ID: 27690436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Born-Oppenheimer treatment of the H2 Hookean molecule.
    Ludeña EV; Lopez X; Ugalde JM
    J Chem Phys; 2005 Jul; 123(2):24102. PubMed ID: 16050736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum wave packet ab initio molecular dynamics: an approach to study quantum dynamics in large systems.
    Iyengar SS; Jakowski J
    J Chem Phys; 2005 Mar; 122(11):114105. PubMed ID: 15836199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved photoelectron spectroscopy of coupled electron-nuclear motion.
    Falge M; Engel V; Gräfe S
    J Chem Phys; 2011 May; 134(18):184307. PubMed ID: 21568506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.