BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37843172)

  • 1. Is Over-parameterization a Problem for Profile Mixture Models?
    Baños H; Susko E; Roger AJ
    Syst Biol; 2024 May; 73(1):53-75. PubMed ID: 37843172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny.
    Wang HC; Li K; Susko E; Roger AJ
    BMC Evol Biol; 2008 Dec; 8():331. PubMed ID: 19087270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation.
    Wang HC; Minh BQ; Susko E; Roger AJ
    Syst Biol; 2018 Mar; 67(2):216-235. PubMed ID: 28950365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relative Importance of Modeling Site Pattern Heterogeneity Versus Partition-Wise Heterotachy in Phylogenomic Inference.
    Wang HC; Susko E; Roger AJ
    Syst Biol; 2019 Nov; 68(6):1003-1019. PubMed ID: 31140564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated Estimation of Frequency Classes in Site-Heterogeneous Profile Mixture Models.
    Susko E; Lincker L; Roger AJ
    Mol Biol Evol; 2018 May; 35(5):1266-1283. PubMed ID: 29688541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An amino acid substitution-selection model adjusts residue fitness to improve phylogenetic estimation.
    Wang HC; Susko E; Roger AJ
    Mol Biol Evol; 2014 Apr; 31(4):779-92. PubMed ID: 24441033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Empirical Mixture Models That Account for Across-Site Compositional Heterogeneity.
    Schrempf D; Lartillot N; Szöllősi G
    Mol Biol Evol; 2020 Dec; 37(12):3616-3631. PubMed ID: 32877529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model.
    Lartillot N; Brinkmann H; Philippe H
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S4. PubMed ID: 17288577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-specific substitution models improve protein-based phylogenetics.
    Brazão JM; Foster PG; Cox CJ
    PeerJ; 2023; 11():e15716. PubMed ID: 37576497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recoding Amino Acids to a Reduced Alphabet may Increase or Decrease Phylogenetic Accuracy.
    Foster PG; Schrempf D; Szöllősi GJ; Williams TA; Cox CJ; Embley TM
    Syst Biol; 2023 Jun; 72(3):723-737. PubMed ID: 35713492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixture models of nucleotide sequence evolution that account for heterogeneity in the substitution process across sites and across lineages.
    Jayaswal V; Wong TK; Robinson J; Poladian L; Jermiin LS
    Syst Biol; 2014 Sep; 63(5):726-42. PubMed ID: 24927722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Who Let the CAT Out of the Bag? Accurately Dealing with Substitutional Heterogeneity in Phylogenomic Analyses.
    Whelan NV; Halanych KM
    Syst Biol; 2017 Mar; 66(2):232-255. PubMed ID: 27633354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Identification of the Closest Living Relative(s) of Tetrapods: Phylogenomic Lessons for Resolving Short Ancient Internodes.
    Irisarri I; Meyer A
    Syst Biol; 2016 Nov; 65(6):1057-1075. PubMed ID: 27425642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositionally Constrained Sites Drive Long-Branch Attraction.
    Szánthó LL; Lartillot N; Szöllősi GJ; Schrempf D
    Syst Biol; 2023 Aug; 72(4):767-780. PubMed ID: 36946562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic mixture models for proteins.
    Le SQ; Lartillot N; Gascuel O
    Philos Trans R Soc Lond B Biol Sci; 2008 Dec; 363(1512):3965-76. PubMed ID: 18852096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pitfalls of heterogeneous processes for phylogenetic reconstruction.
    Stefankovic D; Vigoda E
    Syst Biol; 2007 Feb; 56(1):113-24. PubMed ID: 17366141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis using parsimony and likelihood methods.
    Yang Z
    J Mol Evol; 1996 Feb; 42(2):294-307. PubMed ID: 8919881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian Cross-Validation Comparison of Amino Acid Replacement Models: Contrasting Profile Mixtures, Pairwise Exchangeabilities, and Gamma-Distributed Rates-Across-Sites.
    Bujaki T; Rodrigue N
    J Mol Evol; 2022 Dec; 90(6):468-475. PubMed ID: 36207534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics.
    Brinkmann H; van der Giezen M; Zhou Y; Poncelin de Raucourt G; Philippe H
    Syst Biol; 2005 Oct; 54(5):743-57. PubMed ID: 16243762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Branch Attraction in Species Tree Estimation: Inconsistency of Partitioned Likelihood and Topology-Based Summary Methods.
    Roch S; Nute M; Warnow T
    Syst Biol; 2019 Mar; 68(2):281-297. PubMed ID: 30247732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.