BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 37843212)

  • 1. Succinylation modification: a potential therapeutic target in stroke.
    Lian J; Liu W; Hu Q; Zhang X
    Neural Regen Res; 2024 Apr; 19(4):781-787. PubMed ID: 37843212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirtuin 5-Mediated Lysine Desuccinylation Protects Mitochondrial Metabolism Following Subarachnoid Hemorrhage in Mice.
    Xiao ZP; Lv T; Hou PP; Manaenko A; Liu Y; Jin Y; Gao L; Jia F; Tian Y; Li P; Zhang JH; Hu Q; Zhang X
    Stroke; 2021 Dec; 52(12):4043-4053. PubMed ID: 34807744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1.
    Xia Q; Gao S; Han T; Mao M; Zhan G; Wang Y; Li X
    J Neuroinflammation; 2022 Dec; 19(1):301. PubMed ID: 36517900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein succinylation, hepatic metabolism, and liver diseases.
    Liu S; Li R; Sun YW; Lin H; Li HF
    World J Hepatol; 2024 Mar; 16(3):344-352. PubMed ID: 38577527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HDAC1/2/3 are major histone desuccinylases critical for promoter desuccinylation.
    Li J; Lu L; Liu L; Ren X; Chen J; Yin X; Xiao Y; Li J; Wei G; Huang H; Wei W; Wong J
    Cell Discov; 2023 Aug; 9(1):85. PubMed ID: 37580347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic and metabolic regulation of lysine succinylation.
    Sreedhar A; Wiese EK; Hitosugi T
    Genes Dis; 2020 Jun; 7(2):166-171. PubMed ID: 32215286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy.
    Ali HR; Michel CR; Lin YH; McKinsey TA; Jeong MY; Ambardekar AV; Cleveland JC; Reisdorph R; Reisdorph N; Woulfe KC; Fritz KS
    J Mol Cell Cardiol; 2020 Jan; 138():304-317. PubMed ID: 31836543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways.
    Park J; Chen Y; Tishkoff DX; Peng C; Tan M; Dai L; Xie Z; Zhang Y; Zwaans BM; Skinner ME; Lombard DB; Zhao Y
    Mol Cell; 2013 Jun; 50(6):919-30. PubMed ID: 23806337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function.
    Sadhukhan S; Liu X; Ryu D; Nelson OD; Stupinski JA; Li Z; Chen W; Zhang S; Weiss RS; Locasale JW; Auwerx J; Lin H
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4320-5. PubMed ID: 27051063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRT5-Related Desuccinylation Modification Contributes to Quercetin-Induced Protection against Heart Failure and High-Glucose-Prompted Cardiomyocytes Injured through Regulation of Mitochondrial Quality Surveillance.
    Chang X; Zhang T; Wang J; Liu Y; Yan P; Meng Q; Yin Y; Wang S
    Oxid Med Cell Longev; 2021; 2021():5876841. PubMed ID: 34603599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli.
    Colak G; Xie Z; Zhu AY; Dai L; Lu Z; Zhang Y; Wan X; Chen Y; Cha YH; Lin H; Zhao Y; Tan M
    Mol Cell Proteomics; 2013 Dec; 12(12):3509-20. PubMed ID: 24176774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimized desuccinylase activity assay reveals a difference in desuccinylation activity between proliferative and differentiated cells.
    Yuan T; Keijer J; Guo AH; Lombard DB; de Boer VCJ
    Sci Rep; 2020 Oct; 10(1):17030. PubMed ID: 33046741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the molecular mechanism underlying Sirt5-catalyzed desuccinylation of histone peptides.
    Hang T; Chen W; Wu M; Zhan L; Wang C; Jia N; Zhang X; Zang J
    Biochem J; 2019 Jan; 476(2):211-223. PubMed ID: 30523058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the mechanism of succinylation in cancer.
    Lu K; Han D
    Medicine (Baltimore); 2022 Nov; 101(45):e31493. PubMed ID: 36397343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial sirtuins: regulators of protein acylation and metabolism.
    He W; Newman JC; Wang MZ; Ho L; Verdin E
    Trends Endocrinol Metab; 2012 Sep; 23(9):467-76. PubMed ID: 22902903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine succinylation, the metabolic bridge between cancer and immunity.
    Shen R; Ruan H; Lin S; Liu B; Song H; Li L; Ma T
    Genes Dis; 2023 Nov; 10(6):2470-2478. PubMed ID: 37554179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism?
    Osborne B; Cooney GJ; Turner N
    Biochim Biophys Acta; 2014 Apr; 1840(4):1295-302. PubMed ID: 23994496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinylation Links Metabolism to Protein Functions.
    Yang Y; Gibson GE
    Neurochem Res; 2019 Oct; 44(10):2346-2359. PubMed ID: 30903449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of succinyl-CoA metabolism in view of succinylation regulation to improve the erythromycin production.
    Ke X; Jiang X; Huang M; Tian X; Chu J
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5153-5165. PubMed ID: 35821431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting succinylation-mediated metabolic reprogramming as a potential approach for cancer therapy.
    Liu Z; Wang R; Wang Y; Duan Y; Zhan H
    Biomed Pharmacother; 2023 Dec; 168():115713. PubMed ID: 37852104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.