These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37843286)
1. Predicting cardiovascular disease risk from gut microbial genes. Claesen J; Brown JM mBio; 2023 Dec; 14(6):e0197023. PubMed ID: 37843286 [TBL] [Abstract][Full Text] [Related]
2. Targeted curation of the gut microbial gene content modulating human cardiovascular disease. Borton MA; Shaffer M; Hoyt DW; Jiang R; Ellenbogen JB; Purvine S; Nicora CD; Eder EK; Wong AR; Smulian AG; Lipton MS; Krzycki JA; Wrighton KC mBio; 2023 Oct; 14(5):e0151123. PubMed ID: 37695138 [TBL] [Abstract][Full Text] [Related]
3. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Rath S; Heidrich B; Pieper DH; Vital M Microbiome; 2017 May; 5(1):54. PubMed ID: 28506279 [TBL] [Abstract][Full Text] [Related]
4. Trimethylamine/Trimethylamine-N-Oxide as a Key Between Diet and Cardiovascular Diseases. He S; Jiang H; Zhuo C; Jiang W Cardiovasc Toxicol; 2021 Aug; 21(8):593-604. PubMed ID: 34003426 [TBL] [Abstract][Full Text] [Related]
5. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. Romano KA; Vivas EI; Amador-Noguez D; Rey FE mBio; 2015 Mar; 6(2):e02481. PubMed ID: 25784704 [TBL] [Abstract][Full Text] [Related]
6. Gut Microbiota and Cardiovascular Disease. Witkowski M; Weeks TL; Hazen SL Circ Res; 2020 Jul; 127(4):553-570. PubMed ID: 32762536 [TBL] [Abstract][Full Text] [Related]
7. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems. Jameson E; Doxey AC; Airs R; Purdy KJ; Murrell JC; Chen Y Microb Genom; 2016 Sep; 2(9):e000080. PubMed ID: 28785417 [TBL] [Abstract][Full Text] [Related]
8. Microbiology Meets Big Data: The Case of Gut Microbiota-Derived Trimethylamine. Falony G; Vieira-Silva S; Raes J Annu Rev Microbiol; 2015; 69():305-21. PubMed ID: 26274026 [TBL] [Abstract][Full Text] [Related]
9. Metagenomic data-mining reveals enrichment of trimethylamine-N-oxide synthesis in gut microbiome in atrial fibrillation patients. Zuo K; Liu X; Wang P; Jiao J; Han C; Liu Z; Yin X; Li J; Yang X BMC Genomics; 2020 Jul; 21(1):526. PubMed ID: 32731896 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Alterations in Intestinal Flora in Chinese Elderly with Cardiovascular Disease and Its Association with Trimethylamine. He Y; Chen S; Xue Y; Lu H; Li Z; Jia X; Ning Y; Yuan Q; Wang S Nutrients; 2024 Jun; 16(12):. PubMed ID: 38931219 [TBL] [Abstract][Full Text] [Related]
11. Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut. Jameson E; Quareshy M; Chen Y Methods; 2018 Oct; 149():42-48. PubMed ID: 29684641 [TBL] [Abstract][Full Text] [Related]
12. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. Borrel G; McCann A; Deane J; Neto MC; Lynch DB; Brugère JF; O'Toole PW ISME J; 2017 Sep; 11(9):2059-2074. PubMed ID: 28585938 [TBL] [Abstract][Full Text] [Related]
13. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease. Fennema D; Phillips IR; Shephard EA Drug Metab Dispos; 2016 Nov; 44(11):1839-1850. PubMed ID: 27190056 [TBL] [Abstract][Full Text] [Related]
14. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism. Buffa JA; Romano KA; Copeland MF; Cody DB; Zhu W; Galvez R; Fu X; Ward K; Ferrell M; Dai HJ; Skye S; Hu P; Li L; Parlov M; McMillan A; Wei X; Nemet I; Koeth RA; Li XS; Wang Z; Sangwan N; Hajjar AM; Dwidar M; Weeks TL; Bergeron N; Krauss RM; Tang WHW; Rey FE; DiDonato JA; Gogonea V; Gerberick GF; Garcia-Garcia JC; Hazen SL Nat Microbiol; 2022 Jan; 7(1):73-86. PubMed ID: 34949826 [TBL] [Abstract][Full Text] [Related]
15. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. Chen ML; Yi L; Zhang Y; Zhou X; Ran L; Yang J; Zhu JD; Zhang QY; Mi MT mBio; 2016 Apr; 7(2):e02210-15. PubMed ID: 27048804 [TBL] [Abstract][Full Text] [Related]
16. The gut microbiome across the cardiovascular risk spectrum. Prins FM; Collij V; Groot HE; Björk JR; Swarte JC; Andreu-Sánchez S; Jansen BH; Fu J; Harmsen HJM; Zhernakova A; Lipsic E; van der Harst P; Weersma RK; Gacesa R Eur J Prev Cardiol; 2024 Jun; 31(8):935-944. PubMed ID: 38060843 [TBL] [Abstract][Full Text] [Related]
17. Understanding connections and roles of gut microbiome in cardiovascular diseases. Rajendiran E; Ramadass B; Ramprasath V Can J Microbiol; 2021 Feb; 67(2):101-111. PubMed ID: 33079568 [TBL] [Abstract][Full Text] [Related]
18. Interaction between gut microbiome and cardiovascular disease. Peng J; Xiao X; Hu M; Zhang X Life Sci; 2018 Dec; 214():153-157. PubMed ID: 30385177 [TBL] [Abstract][Full Text] [Related]
19. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency. Macpherson ME; Hov JR; Ueland T; Dahl TB; Kummen M; Otterdal K; Holm K; Berge RK; Mollnes TE; Trøseid M; Halvorsen B; Aukrust P; Fevang B; Jørgensen SF Front Immunol; 2020; 11():574500. PubMed ID: 33042155 [TBL] [Abstract][Full Text] [Related]
20. Enriched metabolites that potentially promote age-associated diseases in subjects with an elderly-type gut microbiota. Yoshimoto S; Mitsuyama E; Yoshida K; Odamaki T; Xiao JZ Gut Microbes; 2021; 13(1):1-11. PubMed ID: 33430687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]