These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37843868)

  • 1. Reversible and high-contrast thermal conductivity switching in a flexible covalent organic framework possessing negative Poisson's ratio.
    Thakur S; Giri A
    Mater Horiz; 2023 Nov; 10(12):5484-5491. PubMed ID: 37843868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Negative Poisson's Ratio in Thermally Conductive Covalent Organic Frameworks.
    Giri A; Evans AM; Rahman MA; McGaughey AJH; Hopkins PE
    ACS Nano; 2022 Feb; 16(2):2843-2851. PubMed ID: 35143183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Thermal Conductivity Switching Using Flexible Metal-Organic Frameworks.
    Babaei H; Meihaus KR; Long JR
    Chem Mater; 2023 Aug; 35(16):6220-6226. PubMed ID: 37637009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pushing the Limits of Heat Conduction in Covalent Organic Frameworks Through High-Throughput Screening of Their Thermal Conductivity.
    Thakur S; Giri A
    Small; 2024 Aug; 20(32):e2401702. PubMed ID: 38567486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new family of two-dimensional ferroelastic semiconductors with negative Poisson's ratios.
    Yuan JH; Mao GQ; Xue KH; Wang J; Miao XS
    Nanoscale; 2020 Jul; 12(26):14150-14159. PubMed ID: 32598411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of imine covalent organic frameworks in sample pretreatment].
    Yuan H; Lu Z; Li Y; Zhang C; Li G
    Se Pu; 2022 Feb; 40(2):109-122. PubMed ID: 35080157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative Poisson's Ratio in Modern Functional Materials.
    Huang C; Chen L
    Adv Mater; 2016 Oct; 28(37):8079-8096. PubMed ID: 27378610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials.
    Tomko JA; Pena-Francesch A; Jung H; Tyagi M; Allen BD; Demirel MC; Hopkins PE
    Nat Nanotechnol; 2018 Oct; 13(10):959-964. PubMed ID: 30104620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auxetic B
    Wang B; Wu Q; Zhang Y; Ma L; Wang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33231-33237. PubMed ID: 31436953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photostimulus-Responsive Large-Area Two-Dimensional Covalent Organic Framework Films.
    Yu F; Liu W; Li B; Tian D; Zuo JL; Zhang Q
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16101-16104. PubMed ID: 31483541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Surface Functionalization and Physical Properties of Nanoinclusions on Thermal Conductivity Enhancement in an Organic Phase Change Material.
    Mishra AK; Lahiri BB; Philip J
    ACS Omega; 2018 Aug; 3(8):9487-9504. PubMed ID: 31459082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Hyperbolic Two-Dimensional Carbon Material with an In-Plane Negative Poisson's Ratio Behavior and Low-Gap Semiconductor Characteristics.
    Li M; Yuan K; Zhao Y; Gao Z; Zhao X
    ACS Omega; 2020 Jul; 5(26):15783-15790. PubMed ID: 32656397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson's ratio.
    Tian J; Tang K; Chen X; Wang X
    Nanoscale; 2022 Sep; 14(35):12677-12691. PubMed ID: 35972125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructure engineering of two-dimensional diamonds toward high thermal conductivity and approaching zero Poisson's ratio.
    Hu Y; Li D; Feng C; Li S; Chen B; Li D; Zhang G
    Phys Chem Chem Phys; 2022 Jun; 24(25):15340-15348. PubMed ID: 35703326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.
    Horike S; Umeyama D; Kitagawa S
    Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-triggered thermal conductivity switching in azobenzene polymers.
    Shin J; Sung J; Kang M; Xie X; Lee B; Lee KM; White TJ; Leal C; Sottos NR; Braun PV; Cahill DG
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5973-5978. PubMed ID: 30850519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Three-dimensional Polymer Scaffolding Material Exhibiting a Zero Poisson's Ratio.
    Soman P; Fozdar DY; Lee JW; Phadke A; Varghese S; Chen S
    Soft Matter; 2012 May; 8(18):4946-4951. PubMed ID: 24014252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios.
    Chen D; Zheng X
    Sci Rep; 2018 Jun; 8(1):9139. PubMed ID: 29904093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO
    Aryana K; Tomko JA; Gao R; Hoglund ER; Mimura T; Makarem S; Salanova A; Hoque MSB; Pfeifer TW; Olson DH; Braun JL; Nag J; Read JC; Howe JM; Opila EJ; Martin LW; Ihlefeld JF; Hopkins PE
    Nat Commun; 2022 Mar; 13(1):1573. PubMed ID: 35322003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-controlled thermal conductivity in ferroic twinned films.
    Li S; Ding X; Ren J; Moya X; Li J; Sun J; Salje EK
    Sci Rep; 2014 Sep; 4():6375. PubMed ID: 25224749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.