BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37843902)

  • 1. Is creatine a CNS neurotransmitter?
    Mallik B; Frank CA
    Elife; 2023 Oct; 12():. PubMed ID: 37843902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes.
    Braissant O; Béard E; Torrent C; Henry H
    Neurobiol Dis; 2010 Feb; 37(2):423-33. PubMed ID: 19879361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review.
    Braissant O; Henry H
    J Inherit Metab Dis; 2008 Apr; 31(2):230-9. PubMed ID: 18392746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology.
    Bian X; Zhu J; Jia X; Liang W; Yu S; Li Z; Zhang W; Rao Y
    Elife; 2023 Dec; 12():. PubMed ID: 38126335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine deficiency syndromes and the importance of creatine synthesis in the brain.
    Braissant O; Henry H; Béard E; Uldry J
    Amino Acids; 2011 May; 40(5):1315-24. PubMed ID: 21390529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creatine biosynthesis and transport in health and disease.
    Joncquel-Chevalier Curt M; Voicu PM; Fontaine M; Dessein AF; Porchet N; Mention-Mulliez K; Dobbelaere D; Soto-Ares G; Cheillan D; Vamecq J
    Biochimie; 2015 Dec; 119():146-65. PubMed ID: 26542286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models?
    Hanna-El-Daher L; Braissant O
    Amino Acids; 2016 Aug; 48(8):1877-95. PubMed ID: 26861125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonium alters creatine transport and synthesis in a 3D culture of developing brain cells, resulting in secondary cerebral creatine deficiency.
    Braissant O; Cagnon L; Monnet-Tschudi F; Speer O; Wallimann T; Honegger P; Henry H
    Eur J Neurosci; 2008 Apr; 27(7):1673-85. PubMed ID: 18380667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current and potential new treatment strategies for creatine deficiency syndromes.
    Fernandes-Pires G; Braissant O
    Mol Genet Metab; 2022 Jan; 135(1):15-26. PubMed ID: 34972654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creatine and guanidinoacetate transport at blood-brain and blood-cerebrospinal fluid barriers.
    Braissant O
    J Inherit Metab Dis; 2012 Jul; 35(4):655-64. PubMed ID: 22252611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homoarginine- and Creatine-Dependent Gene Regulation in Murine Brains with l-Arginine:Glycine Amidinotransferase Deficiency.
    Jensen M; Müller C; Schwedhelm E; Arunachalam P; Gelderblom M; Magnus T; Gerloff C; Zeller T; Choe CU
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32182846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mouse Model of Creatine Transporter Deficiency Reveals Impaired Motor Function and Muscle Energy Metabolism.
    Stockebrand M; Sasani A; Das D; Hornig S; Hermans-Borgmeyer I; Lake HA; Isbrandt D; Lygate CA; Heerschap A; Neu A; Choe CU
    Front Physiol; 2018; 9():773. PubMed ID: 30013483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of homoarginine on creatine accumulation and biosynthesis in the mouse.
    Lygate CA; Lake HA; McAndrew DJ; Neubauer S; Zervou S
    Front Nutr; 2022; 9():969702. PubMed ID: 36017222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new rat model of creatine transporter deficiency reveals behavioral disorder and altered brain metabolism.
    Duran-Trio L; Fernandes-Pires G; Simicic D; Grosse J; Roux-Petronelli C; Bruce SJ; Binz PA; Sandi C; Cudalbu C; Braissant O
    Sci Rep; 2021 Jan; 11(1):1636. PubMed ID: 33452333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse.
    Dickinson H; Ireland ZJ; Larosa DA; O'Connell BA; Ellery S; Snow R; Walker DW
    Reprod Sci; 2013 Sep; 20(9):1096-102. PubMed ID: 23427185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism.
    Carducci C; Carducci C; Santagata S; Adriano E; Artiola C; Thellung S; Gatta E; Robello M; Florio T; Antonozzi I; Leuzzi V; Balestrino M
    BMC Neurosci; 2012 Apr; 13():41. PubMed ID: 22536786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and transport of creatine in the CNS: importance for cerebral functions.
    Béard E; Braissant O
    J Neurochem; 2010 Oct; 115(2):297-313. PubMed ID: 20796169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creatine biosynthesis and transport by the term human placenta.
    Ellery SJ; Della Gatta PA; Bruce CR; Kowalski GM; Davies-Tuck M; Mockler JC; Murthi P; Walker DW; Snow RJ; Dickinson H
    Placenta; 2017 Apr; 52():86-93. PubMed ID: 28454702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study.
    Braissant O; Henry H; Loup M; Eilers B; Bachmann C
    Brain Res Mol Brain Res; 2001 Jan; 86(1-2):193-201. PubMed ID: 11165387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marker enzyme activities in hindleg from creatine-deficient AGAT and GAMT KO mice - differences between models, muscles, and sexes.
    Barsunova K; Vendelin M; Birkedal R
    Sci Rep; 2020 May; 10(1):7956. PubMed ID: 32409787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.