These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37843999)

  • 1. Frequent Pattern Mining in Continuous-Time Temporal Networks.
    Jazayeri A; Yang CC
    IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):305-321. PubMed ID: 37843999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering metric temporal constraint networks on temporal databases.
    Álvarez MR; Félix P; Cariñena P
    Artif Intell Med; 2013 Jul; 58(3):139-54. PubMed ID: 23660232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.
    He J; Wang C; Qiu K; Zhong W
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S6. PubMed ID: 25350277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MODIT: MOtif DIscovery in Temporal Networks.
    Grasso R; Micale G; Ferro A; Pulvirenti A
    Front Big Data; 2021; 4():806014. PubMed ID: 35281988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-Operative Coevolutionary Neural Networks for Mining Functional Association Rules.
    Wang B; Merrick KE; Abbass HA
    IEEE Trans Neural Netw Learn Syst; 2017 Jun; 28(6):1331-1344. PubMed ID: 28113869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grasping frequent subgraph mining for bioinformatics applications.
    Mrzic A; Meysman P; Bittremieux W; Moris P; Cule B; Goethals B; Laukens K
    BioData Min; 2018; 11():20. PubMed ID: 30202444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein function by frequent functional association pattern mining in protein interaction networks.
    Cho YR; Zhang A
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):30-6. PubMed ID: 19726271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On mining clinical pathway patterns from medical behaviors.
    Huang Z; Lu X; Duan H
    Artif Intell Med; 2012 Sep; 56(1):35-50. PubMed ID: 22809825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MACFP: Maximal Approximate Consecutive Frequent Pattern Mining under Edit Distance.
    Shang J; Peng J; Han J
    Proc SIAM Int Conf Data Min; 2016 May; 2016():558-566. PubMed ID: 28174677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event prediction from news text using subgraph embedding and graph sequence mining.
    Cekinel RF; Karagoz P
    World Wide Web; 2022; 25(6):2403-2428. PubMed ID: 35250363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined mining: discovering informative knowledge in complex data.
    Cao L; Zhang H; Zhao Y; Luo D; Zhang C
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):699-712. PubMed ID: 21592913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNAP: A General Purpose Network Analysis and Graph Mining Library.
    Leskovec J; Sosič R
    ACM Trans Intell Syst Technol; 2016 Oct; 8(1):. PubMed ID: 28344853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-Patterns revisited: mining for temporal patterns in sensor data.
    Salah AA; Pauwels E; Tavenard R; Gevers T
    Sensors (Basel); 2010; 10(8):7496-513. PubMed ID: 22163613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal Network Pattern Identification by Community Modelling.
    Gao X; Zheng Q; Vega-Oliveros DA; Anghinoni L; Zhao L
    Sci Rep; 2020 Jan; 10(1):240. PubMed ID: 31937862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation and evaluation of a multivariate abstraction-based, interval-based dynamic time-warping method as a similarity measure for longitudinal medical records.
    Lion M; Shahar Y
    J Biomed Inform; 2021 Nov; 123():103919. PubMed ID: 34628062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining coherent dense subgraphs across massive biological networks for functional discovery.
    Hu H; Yan X; Huang Y; Han J; Zhou XJ
    Bioinformatics; 2005 Jun; 21 Suppl 1():i213-21. PubMed ID: 15961460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Incremental Mining Algorithm for Discovering Sequential Pattern in Wireless Sensor Network Environments.
    Lyu X; Ma H
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-Driven Rule Mining and Representation of Temporal Patterns in Physiological Sensor Data.
    Banaee H; Loutfi A
    IEEE J Biomed Health Inform; 2015 Sep; 19(5):1557-66. PubMed ID: 26340684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolving network representation learning based on random walks.
    Heidari F; Papagelis M
    Appl Netw Sci; 2020; 5(1):18. PubMed ID: 32215318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clone temporal centrality measures for incomplete sequences of graph snapshots.
    Hanke M; Foraita R
    BMC Bioinformatics; 2017 May; 18(1):261. PubMed ID: 28511665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.