These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 37844252)
1. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase. Liu Y; Harnden KA; Van Stappen C; Dikanov SA; Lu Y Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2308286120. PubMed ID: 37844252 [TBL] [Abstract][Full Text] [Related]
2. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Frandsen KEH; Tovborg M; Jørgensen CI; Spodsberg N; Rosso MN; Hemsworth GR; Garman EF; Grime GW; Poulsen JN; Batth TS; Miyauchi S; Lipzen A; Daum C; Grigoriev IV; Johansen KS; Henrissat B; Berrin JG; Lo Leggio L J Biol Chem; 2019 Nov; 294(45):17117-17130. PubMed ID: 31471321 [TBL] [Abstract][Full Text] [Related]
3. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267 [TBL] [Abstract][Full Text] [Related]
4. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. Gudmundsson M; Kim S; Wu M; Ishida T; Momeni MH; Vaaje-Kolstad G; Lundberg D; Royant A; Ståhlberg J; Eijsink VG; Beckham GT; Sandgren M J Biol Chem; 2014 Jul; 289(27):18782-92. PubMed ID: 24828494 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases. Chaplin AK; Wilson MT; Hough MA; Svistunenko DA; Hemsworth GR; Walton PH; Vijgenboom E; Worrall JAR J Biol Chem; 2016 Jun; 291(24):12838-12850. PubMed ID: 27129229 [TBL] [Abstract][Full Text] [Related]
6. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications. Ipsen JØ; Hallas-Møller M; Brander S; Lo Leggio L; Johansen KS Biochem Soc Trans; 2021 Feb; 49(1):531-540. PubMed ID: 33449071 [TBL] [Abstract][Full Text] [Related]
7. The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent. Isaksen I; Jana S; Payne CM; Bissaro B; Røhr ÅK Biophys J; 2024 May; 123(9):1139-1151. PubMed ID: 38571309 [TBL] [Abstract][Full Text] [Related]
8. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. Kracher D; Andlar M; Furtmüller PG; Ludwig R J Biol Chem; 2018 Feb; 293(5):1676-1687. PubMed ID: 29259126 [TBL] [Abstract][Full Text] [Related]
11. Chemical protein synthesis enabled engineering of saccharide oxidative cleavage activity in artificial metalloenzymes. Luo J; He C Int J Biol Macromol; 2024 Jan; 256(Pt 1):128083. PubMed ID: 38000595 [TBL] [Abstract][Full Text] [Related]
12. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action. Várnai A; Umezawa K; Yoshida M; Eijsink VGH Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere. Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721 [TBL] [Abstract][Full Text] [Related]
14. Mapping the protonation states of the histidine brace in an AA10 lytic polysaccharide monooxygenase using CW-EPR spectroscopy and DFT calculations. Lindley PJ; Parkin A; Davies GJ; Walton PH Faraday Discuss; 2022 May; 234(0):336-348. PubMed ID: 35171174 [TBL] [Abstract][Full Text] [Related]
16. Kβ X-ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for H Lim H; Brueggemeyer MT; Transue WJ; Meier KK; Jones SM; Kroll T; Sokaras D; Kelemen B; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2023 Jul; 145(29):16015-16025. PubMed ID: 37441786 [TBL] [Abstract][Full Text] [Related]
17. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122 [TBL] [Abstract][Full Text] [Related]
18. High-resolution structure of a lytic polysaccharide monooxygenase from Hansson H; Karkehabadi S; Mikkelsen N; Douglas NR; Kim S; Lam A; Kaper T; Kelemen B; Meier KK; Jones SM; Solomon EI; Sandgren M J Biol Chem; 2017 Nov; 292(46):19099-19109. PubMed ID: 28900033 [TBL] [Abstract][Full Text] [Related]
19. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. Eibinger M; Ganner T; Bubner P; Rošker S; Kracher D; Haltrich D; Ludwig R; Plank H; Nidetzky B J Biol Chem; 2014 Dec; 289(52):35929-38. PubMed ID: 25361767 [TBL] [Abstract][Full Text] [Related]
20. Defective copper-cobalt binuclear Prussian blue analogue nanozymes with high specificity as lytic polysaccharide monooxygenase-mimic via axial ligation of histidine. Liu Y; Li R; Du J; Xie J; Guo R J Colloid Interface Sci; 2024 Mar; 657():15-24. PubMed ID: 38029525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]