These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 37844254)
1. An intact pituitary vasopressin system is critical for building a robust circadian clock in the suprachiasmatic nucleus. Yamaguchi Y; Maekawa Y; Kabashima K; Mizuno T; Tainaka M; Suzuki T; Dojo K; Tominaga T; Kuroiwa S; Masubuchi S; Doi M; Tominaga K; Kobayashi K; Yamagata S; Itoi K; Abe M; Schwartz WJ; Sakimura K; Okamura H Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2308489120. PubMed ID: 37844254 [TBL] [Abstract][Full Text] [Related]
2. Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag. Yamaguchi Y Neurosci Res; 2018 Apr; 129():57-61. PubMed ID: 29061320 [TBL] [Abstract][Full Text] [Related]
3. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4) in the suprachiasmatic nucleus circadian clock. Ling HH; Beaulé C; Chiang CK; Tian R; Figeys D; Cheng HY PLoS One; 2014; 9(8):e103103. PubMed ID: 25084275 [TBL] [Abstract][Full Text] [Related]
4. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. Husse J; Leliavski A; Tsang AH; Oster H; Eichele G FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic Plasticity of the Circadian Clock in Response to Photoperiod: A Study in Male Melatonin-Competent Mice. Cox OH; Gianonni-Guzmán MA; Cartailler JP; Cottam MA; McMahon DG J Biol Rhythms; 2024 Oct; 39(5):423-439. PubMed ID: 39096022 [TBL] [Abstract][Full Text] [Related]
6. Development of the mammalian circadian clock. Honma S Eur J Neurosci; 2020 Jan; 51(1):182-193. PubMed ID: 30589961 [TBL] [Abstract][Full Text] [Related]
7. Entrainment of circadian clocks in mammals by arousal and food. Mistlberger RE; Antle MC Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388 [TBL] [Abstract][Full Text] [Related]
8. Mitogen- and stress-activated protein kinase 1 modulates photic entrainment of the suprachiasmatic circadian clock. Cao R; Butcher GQ; Karelina K; Arthur JS; Obrietan K Eur J Neurosci; 2013 Jan; 37(1):130-40. PubMed ID: 23127194 [TBL] [Abstract][Full Text] [Related]
9. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods. Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135 [TBL] [Abstract][Full Text] [Related]
10. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. Mendoza J; Graff C; Dardente H; Pevet P; Challet E J Neurosci; 2005 Feb; 25(6):1514-22. PubMed ID: 15703405 [TBL] [Abstract][Full Text] [Related]
11. GABA from vasopressin neurons regulates the time at which suprachiasmatic nucleus molecular clocks enable circadian behavior. Maejima T; Tsuno Y; Miyazaki S; Tsuneoka Y; Hasegawa E; Islam MT; Enoki R; Nakamura TJ; Mieda M Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526663 [TBL] [Abstract][Full Text] [Related]
12. Cholecystokinin neurons in mouse suprachiasmatic nucleus regulate the robustness of circadian clock. Xie L; Xiong Y; Ma D; Shi K; Chen J; Yang Q; Yan J Neuron; 2023 Jul; 111(14):2201-2217.e4. PubMed ID: 37172583 [TBL] [Abstract][Full Text] [Related]
13. Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock. Hastings MH; Smyllie NJ; Patton AP J Mol Biol; 2020 May; 432(12):3639-3660. PubMed ID: 31996314 [TBL] [Abstract][Full Text] [Related]
14. Vasopressin: An output signal from the suprachiasmatic nucleus to prepare physiology and behaviour for the resting phase. Buijs RM; Hurtado-Alvarado G; Soto-Tinoco E J Neuroendocrinol; 2021 Jul; 33(7):e12998. PubMed ID: 34189788 [TBL] [Abstract][Full Text] [Related]
15. Somatostatin regulates central clock function and circadian responses to light. Joye DAM; Rohr KE; Suenkens K; Wuorinen A; Inda T; Arzbecker M; Mueller E; Huber A; Pancholi H; Blackmore MG; Carmona-Alcocer V; Evans JA Proc Natl Acad Sci U S A; 2023 May; 120(18):e2216820120. PubMed ID: 37098068 [TBL] [Abstract][Full Text] [Related]
16. Targeted Disruption of the Duffield GE; Robles-Murguia M; Hou TY; McDonald KA Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502541 [No Abstract] [Full Text] [Related]
17. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus. Smyllie NJ; Chesham JE; Hamnett R; Maywood ES; Hastings MH Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3657-62. PubMed ID: 26966234 [TBL] [Abstract][Full Text] [Related]
18. Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats. Chun LE; Woodruff ER; Morton S; Hinds LR; Spencer RL J Biol Rhythms; 2015 Oct; 30(5):417-36. PubMed ID: 26271538 [TBL] [Abstract][Full Text] [Related]
19. Nonphotic entrainment of central and peripheral circadian clocks in mice by scheduled voluntary exercise under constant darkness. Sato RY; Yamanaka Y Am J Physiol Regul Integr Comp Physiol; 2023 Apr; 324(4):R526-R535. PubMed ID: 36802951 [TBL] [Abstract][Full Text] [Related]
20. Circadian expression and functional characterization of PEA-15 within the mouse suprachiasmatic nucleus. Wheaton K; Aten S; Queiroz LS; Sullivan K; Oberdick J; Hoyt KR; Obrietan K Eur J Neurosci; 2018 Apr; 47(7):845-857. PubMed ID: 29383758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]