These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37844333)

  • 1. Accuracy of an objective binocular automated phoropter for providing spectacle prescriptions.
    Ozgur E; Blanche PA; Bedrick EJ; Conway MD; Peyman GA; Peyghambarian NN
    Clin Exp Optom; 2024 Sep; 107(7):698-703. PubMed ID: 37844333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steps towards Smarter Solutions in Optometry and Ophthalmology-Inter-Device Agreement of Subjective Methods to Assess the Refractive Errors of the Eye.
    Ohlendorf A; Leube A; Wahl S
    Healthcare (Basel); 2016 Jul; 4(3):. PubMed ID: 27417629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical evaluation of the Topcon BV-1000 automated subjective refraction system.
    Dave T; Fukuma Y
    Optom Vis Sci; 2004 May; 81(5):323-33. PubMed ID: 15181357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of trifocal intraocular lenses on standard autorefraction and aberrometer-based autorefraction.
    Garzón N; García-Montero M; López-Artero E; Poyales F; Albarrán-Diego C
    J Cataract Refract Surg; 2019 Sep; 45(9):1265-1274. PubMed ID: 31326229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of objective and subjective refraction with and without cycloplegia using binocular wavefront optometer with autorefraction and retinoscopy in school-age children.
    Lei Y; Chen X; Cheng M; Li B; Jiang Y; Xu Y; Wang X
    Graefes Arch Clin Exp Ophthalmol; 2023 May; 261(5):1465-1472. PubMed ID: 36527496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance analysis of a compact auto-phoropter for accessible refractive assessment of the human eye.
    Akhoundi F; Ozgur E; Draper C; Voorakanam R; Wycoff J; Reetz D; Blanche PA; LaComb L; Peyman G; Schwiegerling J; Peyghambarian N
    Appl Opt; 2022 Mar; 61(9):2207-2212. PubMed ID: 35333235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agreement of wavefront-based refraction, dry and cycloplegic autorefraction with subjective refraction.
    Bamdad S; Momeni-Moghaddam H; Abdolahian M; Piñero DP
    J Optom; 2022; 15(1):100-106. PubMed ID: 32896507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical evaluation of an automated subjective refraction method implemented in a computer-controlled motorized phoropter.
    Otero C; Aldaba M; Pujol J
    J Optom; 2019; 12(2):74-83. PubMed ID: 30389250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subjective refraction using power vectors by updating a conventional phoropter with a Stokes lens for continuous astigmatic power generation.
    Moreno JRA; Micó V; Albarrán Diego C
    Ophthalmic Physiol Opt; 2023 Sep; 43(5):1029-1039. PubMed ID: 37264763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An alternative clinical routine for subjective refraction based on power vectors with trial frames.
    María Revert A; Conversa MA; Albarrán Diego C; Micó V
    Ophthalmic Physiol Opt; 2017 Jan; 37(1):24-32. PubMed ID: 28030877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The repeatability of automated and clinician refraction.
    Bullimore MA; Fusaro RE; Adams CW
    Optom Vis Sci; 1998 Aug; 75(8):617-22. PubMed ID: 9734807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of an Affordable Handheld Wavefront Autorefractor.
    Rubio M; Hernández CS; Seco E; Perez-Merino P; Casares I; Dave SR; Lim D; Durr NJ; Lage E
    Optom Vis Sci; 2019 Oct; 96(10):726-732. PubMed ID: 31592955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The child self-refraction study results from urban Chinese children in Guangzhou.
    He M; Congdon N; MacKenzie G; Zeng Y; Silver JD; Ellwein L
    Ophthalmology; 2011 Jun; 118(6):1162-9. PubMed ID: 21232802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison Between Refraction From an Adaptive Optics Visual Simulator and Clinical Refractions.
    Tabernero J; Otero C; Pardhan S
    Transl Vis Sci Technol; 2020 Jun; 9(7):23. PubMed ID: 32832229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phakic intraocular lenses for the treatment of refractive errors: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2009; 9(14):1-120. PubMed ID: 23074518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overestimation of hyperopia with autorefraction compared with retinoscopy under cycloplegia in school-age children.
    Hashemi H; Khabazkhoob M; Asharlous A; Yekta A; Emamian MH; Fotouhi A
    Br J Ophthalmol; 2018 Dec; 102(12):1717-1722. PubMed ID: 29439996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new low-cost, compact, auto-phoropter for refractive assessment in developing countries.
    Amirsolaimani B; Peyman G; Schwiegerling J; Bablumyan A; Peyghambarian N
    Sci Rep; 2017 Oct; 7(1):13990. PubMed ID: 29070904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of a low-cost, portable, refractive error estimation device: Results of a diagnostic accuracy trial.
    Joseph S; Sundar B; Rashme VL; Venkatachalam S; Ehrlich JR; Ravilla T
    PLoS One; 2022; 17(8):e0272451. PubMed ID: 35921350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive Accuracy and Visual Outcome by Self-Refraction Using Adjustable-Focus Spectacles in Young Children: A Randomized Clinical Trial.
    Zhao L; Wen Q; Nasrazadani D; Cheung NL; Weinert MC; Freedman SF; Silver J; Priestley YM; Congdon N; Prakalapakorn SG
    JAMA Ophthalmol; 2023 Sep; 141(9):853-860. PubMed ID: 37615952
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.