These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37844637)

  • 1. Understanding the goethite role on stibnite oxidative dissolution and transformation: Spectroscopic and DFT study.
    Jin Y; Qiu Y; Kumar R; Chan T; Yan L
    Sci Total Environ; 2024 Jan; 906():167823. PubMed ID: 37844637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite.
    Yan L; Chan T; Jing C
    Environ Pollut; 2020 Jul; 262():114309. PubMed ID: 32155558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement Mechanism of Stibnite Dissolution Mediated by
    Wang C; Xia JL; Liu HC; Zhou YH; Nie ZY; Chen L; Shu WS
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1.
    Xiang L; Liu C; Liu D; Ma L; Qiu X; Wang H; Lu X
    J Environ Sci (China); 2022 Jan; 111():273-281. PubMed ID: 34949357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate.
    Sheng H; Liu W; Wang Y; Ye L; Jing C
    Environ Pollut; 2024 Jun; 351():124008. PubMed ID: 38641038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of photopromoted oxidative dissolution of antimony trioxide.
    Hu X; Kong L; He M
    Environ Sci Technol; 2014 Dec; 48(24):14266-72. PubMed ID: 25397579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular level understanding of antimony immobilization mechanism on goethite by the combination of X-ray absorption spectroscopy and density functional theory calculations.
    Sun Q; Liu C; Fan T; Cheng H; Cui P; Gu X; Chen L; Ata-Ul-Karim ST; Zhou D; Wang Y
    Sci Total Environ; 2023 Mar; 865():161294. PubMed ID: 36592910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms.
    Liu K; Li F; Pang Y; Fang L; Hocking R
    J Hazard Mater; 2022 Mar; 425():127780. PubMed ID: 34801297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions.
    Loni PC; Wu M; Wang W; Wang H; Ma L; Liu C; Song Y; H Tuovinen O
    J Hazard Mater; 2020 Mar; 385():121561. PubMed ID: 31740307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sunlight-Induced Interfacial Electron Transfer of Ferrihydrite under Oxic Conditions: Mineral Transformation and Redox Active Species Production.
    Shu Z; Pan Z; Wang X; He H; Yan S; Zhu X; Song W; Wang Z
    Environ Sci Technol; 2022 Oct; 56(19):14188-14197. PubMed ID: 36098650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.
    Leuz AK; Mönch H; Johnson CA
    Environ Sci Technol; 2006 Dec; 40(23):7277-82. PubMed ID: 17180978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and mechanistic study of antimonite complexation with organic ligands at the goethite-water interface.
    Zhong W; Yin Z; Wang L; Yan L; Jing C
    Chemosphere; 2022 Aug; 301():134682. PubMed ID: 35472609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimony Redox Biotransformation in the Subsurface: Effect of Indigenous Sb(V) Respiring Microbiota.
    Wang L; Ye L; Yu Y; Jing C
    Environ Sci Technol; 2018 Feb; 52(3):1200-1207. PubMed ID: 29313683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimony Isotope Fractionation during Adsorption on Iron (Oxyhydr)oxides.
    Luo J; Xie X; Shi J; Wang Y
    Environ Sci Technol; 2024 Jan; 58(1):695-703. PubMed ID: 38141021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides.
    Mitsunobu S; Takahashi Y; Terada Y; Sakata M
    Environ Sci Technol; 2010 May; 44(10):3712-8. PubMed ID: 20426473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimony speciation in alkaline sulfide solutions: role of zerovalent sulfur.
    Helz GR; Valerio MS; Capps NE
    Environ Sci Technol; 2002 Mar; 36(5):943-8. PubMed ID: 11918022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimony as a global dilemma: Geochemistry, mobility, fate and transport.
    Herath I; Vithanage M; Bundschuh J
    Environ Pollut; 2017 Apr; 223():545-559. PubMed ID: 28190688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.