These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37844705)
1. Effects of phytohormone on Chlorella vulgaris grown in wastewater-flue gas: C/N/S fixation, wastewater treatment and metabolome analysis. Kong W; Shi S; Peng D; Feng S; Xu L; Wang X; Shen B; Bi Y; Lyu H Chemosphere; 2023 Dec; 345():140398. PubMed ID: 37844705 [TBL] [Abstract][Full Text] [Related]
2. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760 [TBL] [Abstract][Full Text] [Related]
4. Integrated lipid production, CO Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683 [TBL] [Abstract][Full Text] [Related]
5. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006 [TBL] [Abstract][Full Text] [Related]
6. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
7. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. Hu X; Zhou J; Liu G; Gui B J Environ Sci (China); 2016 Aug; 46():83-91. PubMed ID: 27521939 [TBL] [Abstract][Full Text] [Related]
8. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. Zheng M; Dai J; Ji X; Li D; He Y; Wang M; Huang J; Chen B Bioresour Technol; 2021 Nov; 340():125703. PubMed ID: 34371337 [TBL] [Abstract][Full Text] [Related]
9. Role of naphthaleneacetic acid in the degradation of bisphenol A and wastewater treatment by microalgae: Enhancement and signaling. Zhao Z; Yang H; Feng Z; Huo Y; Fu L; Zhou D Chemosphere; 2022 Nov; 307(Pt 2):135829. PubMed ID: 35948092 [TBL] [Abstract][Full Text] [Related]
10. Performance evaluation of an outdoor algal biorefinery for sustainable production of biomass, lipid and lutein valorizing flue-gas carbon dioxide and wastewater cocktail. De Bhowmick G; Sarmah AK; Sen R Bioresour Technol; 2019 Jul; 283():198-206. PubMed ID: 30908984 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium. Yu Q; Yin M; Chen Y; Liu S; Wang S; Li Y; Cui H; Yu D; Ge B; Huang F J Environ Manage; 2023 May; 333():117389. PubMed ID: 36758399 [TBL] [Abstract][Full Text] [Related]
12. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. Xie D; Ji X; Zhou Y; Dai J; He Y; Sun H; Guo Z; Yang Y; Zheng X; Chen B Bioresour Technol; 2022 Apr; 349():126886. PubMed ID: 35217166 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous microalgal biomass production and CO Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732 [TBL] [Abstract][Full Text] [Related]
14. Effects of mixotrophic cultivation on antioxidation and lipid accumulation of Li R; Pan J; Yan M; Yang J; Qin W Int J Phytoremediation; 2020; 22(6):638-643. PubMed ID: 31847537 [TBL] [Abstract][Full Text] [Related]
15. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Chaudhary R; Dikshit AK; Tong YW Environ Sci Pollut Res Int; 2018 Jul; 25(21):20399-20406. PubMed ID: 28656576 [TBL] [Abstract][Full Text] [Related]
17. Regulation effects of indoleacetic acid on lipid production and nutrient removal of Chlorella pyrenoidosa in seawater-containing wastewater. Zhou JL; Vadiveloo A; Chen DZ; Gao F Water Res; 2024 Jan; 248():120864. PubMed ID: 37979569 [TBL] [Abstract][Full Text] [Related]
18. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production. Ma X; Zheng H; Addy M; Anderson E; Liu Y; Chen P; Ruan R Bioresour Technol; 2016 May; 207():252-61. PubMed ID: 26894565 [TBL] [Abstract][Full Text] [Related]
19. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source. Gupta PL; Choi HJ; Pawar RR; Jung SP; Lee SM J Environ Manage; 2016 Dec; 184(Pt 3):585-595. PubMed ID: 27789093 [TBL] [Abstract][Full Text] [Related]
20. Monitoring lipids profile, CO Farooq W; Naqvi SR; Sajid M; Shrivastav A; Kumar K J Biotechnol; 2022 Feb; 345():30-39. PubMed ID: 34995559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]