BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37844848)

  • 1. An exercise stress test for contrast-enhanced duplex ultrasound assessment of lower limb muscle perfusion in patients with peripheral arterial disease.
    Prior SJ; Chrencik MT; Christensen E; Kundi R; Ryan AS; Addison O; Lal BK
    J Vasc Surg; 2024 Feb; 79(2):397-404. PubMed ID: 37844848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease.
    Meneses AL; Nam MCY; Bailey TG; Magee R; Golledge J; Hellsten Y; Keske MA; Greaves K; Askew CD
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1425-H1433. PubMed ID: 30095999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a Better Understanding of Muscle Microvascular Perfusion During Exercise in Patients With Peripheral Artery Disease: The Effect of Lower-Limb Revascularization.
    MenĂªses A; Krastins D; Nam M; Bailey T; Quah J; Sankhla V; Lam J; Jha P; Schulze K; O'Donnell J; Magee R; Golledge J; Greaves K; Askew CD
    J Endovasc Ther; 2024 Feb; 31(1):115-125. PubMed ID: 35898156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity.
    Lindner JR; Womack L; Barrett EJ; Weltman J; Price W; Harthun NL; Kaul S; Patrie JT
    JACC Cardiovasc Imaging; 2008 May; 1(3):343-50. PubMed ID: 19356447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise versus vasodilator stress limb perfusion imaging for the assessment of peripheral artery disease.
    Davidson BP; Belcik JT; Landry G; Linden J; Lindner JR
    Echocardiography; 2017 Aug; 34(8):1187-1194. PubMed ID: 28664576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease.
    Jiji RS; Pollak AW; Epstein FH; Antkowiak PF; Meyer CH; Weltman AL; Lopez D; DiMaria JM; Hunter JR; Christopher JM; Kramer CM
    J Cardiovasc Magn Reson; 2013 Jan; 15(1):14. PubMed ID: 23343398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calf muscle stimulation with the Veinoplus device results in a significant increase in lower limb inflow without generating limb ischemia or pain in patients with peripheral artery disease.
    Abraham P; Mateus V; Bieuzen F; Ouedraogo N; Cisse F; Leftheriotis G
    J Vasc Surg; 2013 Mar; 57(3):714-9. PubMed ID: 23312939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers.
    Pollak AW; Meyer CH; Epstein FH; Jiji RS; Hunter JR; Dimaria JM; Christopher JM; Kramer CM
    JACC Cardiovasc Imaging; 2012 Dec; 5(12):1224-30. PubMed ID: 23236972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limb Perfusion During Exercise Assessed by Contrast Ultrasound Varies According to Symptom Severity in Patients with Peripheral Artery Disease.
    Davidson BP; Hodovan J; Mason OR; Moccetti F; Gupta A; Muller M; Belcik JT; Annex BH; Lindner JR
    J Am Soc Echocardiogr; 2019 Sep; 32(9):1086-1094.e3. PubMed ID: 31235422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of skeletal muscle microvascular perfusion of lower extremities by cardiovascular magnetic resonance arterial spin labeling, blood oxygenation level-dependent, and intravoxel incoherent motion techniques.
    Suo S; Zhang L; Tang H; Ni Q; Li S; Mao H; Liu X; He S; Qu J; Lu Q; Xu J
    J Cardiovasc Magn Reson; 2018 Mar; 20(1):18. PubMed ID: 29551091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-density lipoprotein lowering does not improve calf muscle perfusion, energetics, or exercise performance in peripheral arterial disease.
    West AM; Anderson JD; Epstein FH; Meyer CH; Wang H; Hagspiel KD; Berr SS; Harthun NL; Weltman AL; Dimaria JM; Hunter JR; Christopher JM; Kramer CM
    J Am Coll Cardiol; 2011 Aug; 58(10):1068-76. PubMed ID: 21867844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Resonance Imaging-Derived Microvascular Perfusion Modeling to Assess Peripheral Artery Disease.
    Gimnich OA; Belousova T; Short CM; Taylor AA; Nambi V; Morrisett JD; Ballantyne CM; Bismuth J; Shah DJ; Brunner G
    J Am Heart Assoc; 2023 Feb; 12(3):e027649. PubMed ID: 36688362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between calf muscle oxygen saturation with ambulatory function and quality of life in symptomatic patients with peripheral artery disease.
    Gardner AW; Montgomery PS; Wang M; Shen B
    J Vasc Surg; 2020 Aug; 72(2):632-642. PubMed ID: 32081480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast-Enhanced Ultrasound Reveals Exercise-Induced Perfusion Deficits in Claudicants.
    Kundi R; Prior SJ; Addison O; Lu M; Ryan AS; Lal BK
    J Vasc Endovasc Surg; 2017; 2(1):. PubMed ID: 28691118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: cuff occlusion hyperemia vs exercise.
    Lopez D; Pollak AW; Meyer CH; Epstein FH; Zhao L; Pesch AJ; Jiji R; Kay JR; DiMaria JM; Christopher JM; Kramer CM
    J Cardiovasc Magn Reson; 2015 Feb; 17(1):23. PubMed ID: 25890198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolutional Neural Networks to Study Contrast-Enhanced Magnetic Resonance Imaging-Based Skeletal Calf Muscle Perfusion in Peripheral Artery Disease.
    Khagi B; Belousova T; Short CM; Taylor AA; Bismuth J; Shah DJ; Brunner G
    Am J Cardiol; 2024 Jun; 220():56-66. PubMed ID: 38580040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging.
    Zhang JL; Layec G; Hanrahan C; Conlin CC; Hart C; Hu N; Khor L; Mueller M; Lee VS
    Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H201-H211. PubMed ID: 30388024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age.
    Meneses AL; Nam MCY; Bailey TG; Anstey C; Golledge J; Keske MA; Greaves K; Askew CD
    Physiol Rep; 2020 Oct; 8(19):e14580. PubMed ID: 33038050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking Exercise Therapy Effects on Lower Extremity Skeletal Muscle in Peripheral Artery Disease.
    McDermott MM; Dayanidhi S; Kosmac K; Saini S; Slysz J; Leeuwenburgh C; Hartnell L; Sufit R; Ferrucci L
    Circ Res; 2021 Jun; 128(12):1851-1867. PubMed ID: 34110902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of supervised exercise on skeletal muscle blood flow and vascular function measured with MRI in patients with peripheral artery disease.
    Englund EK; Langham MC; Wehrli FW; Fanning MJ; Khan Z; Schmitz KH; Ratcliffe SJ; Floyd TF; Mohler ER
    Am J Physiol Heart Circ Physiol; 2022 Sep; 323(3):H388-H396. PubMed ID: 35802515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.