These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37845148)

  • 1. A Multidomain Generative Adversarial Network for Hoarse-to-Normal Voice Conversion.
    Chu M; Wang J; Fan Z; Yang M; Xu C; Ma Y; Tao Z; Wu D
    J Voice; 2023 Oct; ():. PubMed ID: 37845148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E-DGAN: An Encoder-Decoder Generative Adversarial Network Based Method for Pathological to Normal Voice Conversion.
    Chu M; Yang M; Xu C; Ma Y; Wang J; Fan Z; Tao Z; Wu D
    IEEE J Biomed Health Inform; 2023 May; 27(5):2489-2500. PubMed ID: 37022002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint Dictionary Learning-Based Non-Negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery.
    Fu SW; Li PC; Lai YH; Yang CC; Hsieh LC; Tsao Y
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2584-2594. PubMed ID: 28026747
    [No Abstract]   [Full Text] [Related]  

  • 4. STYLETTS-VC: ONE-SHOT VOICE CONVERSION BY KNOWLEDGE TRANSFER FROM STYLE-BASED TTS MODELS.
    Li YA; Han C; Mesgarani N
    SLT Workshop Spok Lang Technol; 2023 Jan; 2022():920-927. PubMed ID: 37577031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Variability in the digital voice analysis depending on the analyzed vocal, in normal patients and in patients with dysphonia].
    Preciado López JA; Calzada Uriondo MG; Zabaleta López M; García Cano FJ
    Acta Otorrinolaringol Esp; 2000 Oct; 51(7):618-28. PubMed ID: 11270041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks.
    Bao G; Yan B; Tong L; Shu J; Wang L; Yang K; Zeng Y
    Front Comput Neurosci; 2021; 15():723843. PubMed ID: 34955797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-robust voice conversion with domain adversarial training.
    Du H; Xie L; Li H
    Neural Netw; 2022 Apr; 148():74-84. PubMed ID: 35104714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation.
    Zhao H; Li T; Xiao Y; Wang Y
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating Voice Attributes by Adversarial Learning of Structured Disentangled Representations.
    Benaroya L; Obin N; Roebel A
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A joint-feature learning-based voice conversion system for dysarthric user based on deep learning technology.
    Chen KC; Yeh HW; Hang JY; Jhang SH; Zheng WZ; Lai YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1838-1841. PubMed ID: 31946255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harmonic-intensity analysis of normal and hoarse voices.
    Hiraoka N; Kitazoe Y; Ueta H; Tanaka S; Tanabe M
    J Acoust Soc Am; 1984 Dec; 76(6):1648-51. PubMed ID: 6520302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radon-Sobolev Variational Auto-Encoders.
    Turinici G
    Neural Netw; 2021 Sep; 141():294-305. PubMed ID: 33933889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional brain network identification and fMRI augmentation using a VAE-GAN framework.
    Qiang N; Gao J; Dong Q; Yue H; Liang H; Liu L; Yu J; Hu J; Zhang S; Ge B; Sun Y; Liu Z; Liu T; Li J; Song H; Zhao S
    Comput Biol Med; 2023 Oct; 165():107395. PubMed ID: 37669583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term quality of voice is usually acceptable after initial hoarseness caused by a thyroidectomy or a parathyroidectomy.
    Christakis I; Klang P; Talat N; Galata G; Schulte KM
    Gland Surg; 2019 Jun; 8(3):226-236. PubMed ID: 31328101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creativity in Generative Musical Networks: Evidence From Two Case Studies.
    Cádiz RF; Macaya A; Cartagena M; Parra D
    Front Robot AI; 2021; 8():680586. PubMed ID: 34409070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SuperstarGAN: Generative adversarial networks for image-to-image translation in large-scale domains.
    Ko K; Yeom T; Lee M
    Neural Netw; 2023 May; 162():330-339. PubMed ID: 36940493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients.
    Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG
    Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422
    [No Abstract]   [Full Text] [Related]  

  • 19. An analysis-by-synthesis approach to the estimation of vocal cord polyp features.
    Koizumi T; Taniguchi S; Itakura F
    Laryngoscope; 1993 Sep; 103(9):1035-42. PubMed ID: 8361307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hoarse voice in adults: an evidence-based approach to the 12 minute consultation.
    Syed I; Daniels E; Bleach NR
    Clin Otolaryngol; 2009 Feb; 34(1):54-8. PubMed ID: 19260886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.