These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3784526)

  • 1. [Neurocyte reaction of the kinesthetic analyzer of rats to the action of vibration].
    Antipov VV; Drobyshev VI; Ushakov IB; Stepanova TP
    Kosm Biol Aviakosm Med; 1986; 20(5):60-4. PubMed ID: 3784526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structural characteristics of the vestibular analyzer after exposure to low-frequency vibration].
    Nasibullin BA; Brovina NN
    Gig Tr Prof Zabol; 1991; (10):40-1. PubMed ID: 1800269
    [No Abstract]   [Full Text] [Related]  

  • 3. [Changes in neuronal structure and activity of various oxidation- reduction enzymes in the cerebellum after continuous long-term general low-frequency vibration].
    Il'in II; Nasibullin BA; Zherebitskiĭ VA
    Arkh Anat Gistol Embriol; 1991 Feb; 100(2):9-15. PubMed ID: 2053887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The turning reflex, static endurance and structure of the vestibular apparatus receptors in rats exposed to whole-body low-frequency vibration].
    Lychakov DV; Pashchinin AN
    Kosm Biol Aviakosm Med; 1991; 25(1):23-8. PubMed ID: 2046294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Localization of the tactile-kinesthetic analyzer in rats].
    Tkhu D
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1966; 16(3):552-3. PubMed ID: 6005534
    [No Abstract]   [Full Text] [Related]  

  • 6. [Karyometric evaluation of the reactions of cerebral cortical neurons of the rat to the combined action of ionizing radiation, longitudinal G forces and vibration].
    Fedorov VP; Ushakov IB
    Kosm Biol Aviakosm Med; 1987; 21(3):39-42. PubMed ID: 3613494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Morphological characteristic of labyrinthine zone of rat allantoic placenta after exposure to vibration of industrial frequency].
    Sklianov IuI; Savel'eva TV; Vakulin GM
    Morfologiia; 2007; 131(1):68-72. PubMed ID: 17526268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of whole-body low-frequency vibration and noise on the serotonin content of the blood and plasma].
    Tropnikova GK
    Gig Sanit; 1990 Oct; (10):60-2. PubMed ID: 2074031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Selection of the psychophysiological criterion for evaluating whole-body low-frequency vibration].
    Kamenskiĭ IuN
    Kosm Biol Aviakosm Med; 1984; 18(2):47-50. PubMed ID: 6716942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The reaction of the population of mitochondria in the sensorimotor cortical neurons of rats to the prolonged, continuous action of low-frequency vibration].
    Nasibullin BA
    Morfologiia; 1999; 116(6):11-4. PubMed ID: 10709191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves.
    Loffredo MA; Yan JG; Kao D; Zhang LL; Matloub HS; Riley DA
    Muscle Nerve; 2009 Jun; 39(6):770-5. PubMed ID: 19306323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration.
    Kito T; Hashimoto T; Yoneda T; Katamoto S; Naito E
    Brain Res; 2006 Oct; 1114(1):75-84. PubMed ID: 16920087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Morphological picture of the spinal ganglia in guinea pigs exposed to general vibration].
    Sopek M; Gałasińska-Pomykoł I; Finkiewicz-Murawiejska L; Zalewska H
    Med Pr; 1987; 38(5):325-35. PubMed ID: 3444417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Aspects of the reactions of mitochondrial populations in neurons of the sensory motor cortex during prolonged influence of low-frequency vibration of rats].
    Nasibullin BA
    Tsitol Genet; 2002; 36(1):40-5. PubMed ID: 12012595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrotactile perception and effects of short-term exposure to hand-arm vibration.
    Burström L; Lundström R; Hagberg M; Nilsson T
    Ann Occup Hyg; 2009 Jul; 53(5):539-47. PubMed ID: 19403839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of captopril on the nervous function in rabbits exposed to vibration].
    Lin L; Zhang K; Zhang CZ; Zhang J
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2005 Jun; 23(3):175-7. PubMed ID: 16124890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for frequency-dependent arterial damage in vibrated rat tails.
    Curry BD; Govindaraju SR; Bain JL; Zhang LL; Yan JG; Matloub HS; Riley DA
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Jun; 284(2):511-21. PubMed ID: 15791580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Quantitative histologic changes of the glioneuronal complex in the central and intermediate parts of the visual analyzer exposed to microwaves of thermogenic intensity].
    Logvinov SV
    Radiobiologiia; 1989; 29(2):247-50. PubMed ID: 2654995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Resonance frequencies of vibration in rats].
    Ushakov IB; Soloshenko NV; Kozlovskiĭ AP
    Kosm Biol Aviakosm Med; 1983; 17(6):65-8. PubMed ID: 6656192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural systemic impairment from whole-body vibration.
    Yan JG; Zhang LL; Agresti M; LoGiudice J; Sanger JR; Matloub HS; Havlik R
    J Neurosci Res; 2015 May; 93(5):736-44. PubMed ID: 25557339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.