These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37845318)

  • 1. Brain-computer interface for robot control with eye artifacts for assistive applications.
    Karas K; Pozzi L; Pedrocchi A; Braghin F; Roveda L
    Sci Rep; 2023 Oct; 13(1):17512. PubMed ID: 37845318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic artefact removal in a self-paced hybrid brain- computer interface system.
    Yong X; Fatourechi M; Ward RK; Birch GE
    J Neuroeng Rehabil; 2012 Jul; 9():50. PubMed ID: 22838499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft brain-machine interfaces for assistive robotics: A novel control approach.
    Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneo-retinal-dipole and eyelid-related eye artifacts can be corrected offline and online in electroencephalographic and magnetoencephalographic signals.
    Kobler RJ; Sburlea AI; Lopes-Dias C; Schwarz A; Hirata M; Müller-Putz GR
    Neuroimage; 2020 Sep; 218():117000. PubMed ID: 32497788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Low-Complexity Brain-Computer Interface for High-Complexity Robot Swarm Control.
    Canal G; Diaz-Mercado Y; Egerstedt M; Rozell C
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1816-1825. PubMed ID: 37015133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A brain-computer interface method combined with eye tracking for 3D interaction.
    Lee EC; Woo JC; Kim JH; Whang M; Park KR
    J Neurosci Methods; 2010 Jul; 190(2):289-98. PubMed ID: 20580646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EOG-Based Human-Computer Interface: 2000-2020 Review.
    Belkhiria C; Boudir A; Hurter C; Peysakhovich V
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-Based Eye Movement Recognition Using Brain-Computer Interface and Random Forests.
    Antoniou E; Bozios P; Christou V; Tzimourta KD; Kalafatakis K; G Tsipouras M; Giannakeas N; Tzallas AT
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability mapping based artifact detection and removal from single-channel EEG signals for brain-computer interface applications.
    Islam MK; Ghorbanzadeh P; Rastegarnia A
    J Neurosci Methods; 2021 Aug; 360():109249. PubMed ID: 34139268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An MVMD-CCA Recognition Algorithm in SSVEP-Based BCI and Its Application in Robot Control.
    Wang K; Zhai DH; Xiong Y; Hu L; Xia Y
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2159-2167. PubMed ID: 34951857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG Artifacts Handling in a Real Practical Brain-Computer Interface Controlled Vehicle.
    Jafarifarmand A; Badamchizadeh MA
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1200-1208. PubMed ID: 31095487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Brain-Computer Interface for Real-Life Meal-Assist Robot Control.
    Ha J; Park S; Im CH; Kim L
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots.
    Tariq M; Trivailo PM; Simic M
    Front Hum Neurosci; 2018; 12():312. PubMed ID: 30127730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.
    Mannan MM; Kim S; Jeong MY; Kamran MA
    Sensors (Basel); 2016 Feb; 16(2):241. PubMed ID: 26907276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in EEG-Based Brain Robot Interaction Systems.
    Mao X; Li M; Li W; Niu L; Xian B; Zeng M; Chen G
    Comput Intell Neurosci; 2017; 2017():1742862. PubMed ID: 28484488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.