BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37845454)

  • 21. Oxygen supply-consumption balance in the thigh muscles during exhausting knee-extension exercise.
    Azuma K; Homma S; Kagaya A
    J Biomed Opt; 2000 Jan; 5(1):97-101. PubMed ID: 10938772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle O2 extraction reserve during intense cycling is site-specific.
    Spencer MD; Amano T; Kondo N; Kowalchuk JM; Koga S
    J Appl Physiol (1985); 2014 Nov; 117(10):1199-206. PubMed ID: 25257877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in Optical Path Length Reveal Significant Potential Errors of Muscle Oxygenation Evaluation during Exercise in Humans.
    Endo T; Kime R; Fuse S; Murase N; Kurosawa Y; Hamaoka T
    Med Sci Sports Exerc; 2021 Apr; 53(4):853-859. PubMed ID: 33017349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure.
    Barroco AC; Sperandio PA; Reis M; Almeida DR; Neder JA
    Braz J Med Biol Res; 2017 Oct; 50(12):e6327. PubMed ID: 28977120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the NIRS-derived microvascular O2 extraction "reserve" in groups varying in sex and training status using leg blood flow occlusions.
    Inglis EC; Iannetta D; Murias JM
    PLoS One; 2019; 14(7):e0220192. PubMed ID: 31344091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of priming exercise on muscle deoxy[Hb + Mb] during ramp cycle exercise.
    Boone J; Bouckaert J; Barstow TJ; Bourgois J
    Eur J Appl Physiol; 2012 Mar; 112(3):1143-52. PubMed ID: 21766226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limitations of skeletal muscle oxygen delivery and utilization during moderate-intensity exercise in moderately impaired patients with chronic heart failure.
    Niemeijer VM; Spee RF; Schoots T; Wijn PF; Kemps HM
    Am J Physiol Heart Circ Physiol; 2016 Dec; 311(6):H1530-H1539. PubMed ID: 27765748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissociation between exercise intensity thresholds: mechanistic insights from supine exercise.
    Goulding RP; Marwood S; Lei TH; Okushima D; Poole DC; Barstow TJ; Kondo N; Koga S
    Am J Physiol Regul Integr Comp Physiol; 2021 Nov; 321(5):R712-R722. PubMed ID: 34431402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unaltered V̇o
    Koga S; Okushima D; Poole DC; Rossiter HB; Kondo N; Barstow TJ
    Am J Physiol Regul Integr Comp Physiol; 2019 Jul; 317(1):R203-R213. PubMed ID: 31042412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Spatial Distribution of Absolute Skeletal Muscle Deoxygenation During Ramp-Incremental Exercise Is Not Influenced by Hypoxia.
    Bowen TS; Koga S; Amano T; Kondo N; Rossiter HB
    Adv Exp Med Biol; 2016; 876():19-26. PubMed ID: 26782190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accelerated point of muscle deoxygenation during the 20-m shuttle run test.
    Kume D; Iguchi A; Endoh H
    Clin Physiol Funct Imaging; 2018 May; 38(3):390-395. PubMed ID: 28414877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methodological validation of the dynamic heterogeneity of muscle deoxygenation within the quadriceps during cycle exercise.
    Koga S; Poole DC; Fukuoka Y; Ferreira LF; Kondo N; Ohmae E; Barstow TJ
    Am J Physiol Regul Integr Comp Physiol; 2011 Aug; 301(2):R534-41. PubMed ID: 21632845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle Deoxygenation and Its Heterogeneity Changes After Endurance Training.
    Kime R; Niwayama M; Kaneko Y; Takagi S; Fuse S; Osada T; Murase N; Katsumura T
    Adv Exp Med Biol; 2016; 923():275-281. PubMed ID: 27526154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of short work vs. longer work periods within intermittent exercise on V̇o
    McCrudden MC; Keir DA; Belfry GR
    J Appl Physiol (1985); 2017 Jun; 122(6):1435-1444. PubMed ID: 28336535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of supine versus upright exercise on muscle deoxygenation heterogeneity during ramp incremental cycling is site specific.
    Goulding RP; Okushima D; Fukuoka Y; Marwood S; Kondo N; Poole DC; Barstow TJ; Koga S
    Eur J Appl Physiol; 2021 May; 121(5):1283-1296. PubMed ID: 33575912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hypoxia equally reduces the respiratory compensation point and the NIRS-derived [HHb] breakpoint during a ramp-incremental test in young active males.
    Azevedo RDA; J E BS; Inglis EC; Iannetta D; Murias JM
    Physiol Rep; 2020 Jun; 8(12):e14478. PubMed ID: 32592338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systemic and vastus lateralis muscle blood flow and O2 extraction during ramp incremental cycle exercise.
    Murias JM; Spencer MD; Keir DA; Paterson DH
    Am J Physiol Regul Integr Comp Physiol; 2013 May; 304(9):R720-5. PubMed ID: 23515617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in Muscle O
    Takagi S; Kime R; Midorikawa T; Niwayama M; Sakamoto S; Katsumura T
    Adv Exp Med Biol; 2020; 1232():223-229. PubMed ID: 31893414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Aerobic Cycling Training on O
    Takagi S; Kime R; Murase N; Niwayama M; Osada T; Katsumura T
    Adv Exp Med Biol; 2018; 1072():91-96. PubMed ID: 30178329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skeletal muscle deoxygenation abnormalities in early post-myocardial infarction.
    Takagi S; Murase N; Kime R; Niwayama M; Osada T; Katsumura T
    Med Sci Sports Exerc; 2014 Nov; 46(11):2062-9. PubMed ID: 24621961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.