BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37845803)

  • 1. Cavity-Modified Chemiluminescent Reaction of Dioxetane.
    Gudem M; Kowalewski M
    J Phys Chem A; 2023 Nov; 127(45):9483-9494. PubMed ID: 37845803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Photostability of Pyrrole with Optical Nanocavities.
    Gudem M; Kowalewski M
    J Phys Chem A; 2021 Feb; 125(5):1142-1151. PubMed ID: 33464084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores.
    Gnaim S; Green O; Shabat D
    Chem Commun (Camb); 2018 Feb; 54(17):2073-2085. PubMed ID: 29423487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning.
    Rana B; Hohenstein EG; Martínez TJ
    J Phys Chem A; 2024 Jan; 128(1):139-151. PubMed ID: 38110364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones.
    Augusto FA; Francés-Monerris A; Fdez Galván I; Roca-Sanjuán D; Bastos EL; Baader WJ; Lindh R
    Phys Chem Chem Phys; 2017 Feb; 19(5):3955-3962. PubMed ID: 28106183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities.
    Fischer EW; Saalfrank P
    J Chem Phys; 2021 Mar; 154(10):104311. PubMed ID: 33722029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity Control of Molecular Spectroscopy and Photophysics.
    Gu B; Gu Y; Chernyak VY; Mukamel S
    Acc Chem Res; 2023 Oct; 56(20):2753-2762. PubMed ID: 37782841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Do Methyl Groups Enhance the Triplet Chemiexcitation Yield of Dioxetane?
    Vacher M; Farahani P; Valentini A; Frutos LM; Karlsson HO; Fdez Galván I; Lindh R
    J Phys Chem Lett; 2017 Aug; 8(16):3790-3794. PubMed ID: 28749694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochemiluminescent peroxide crystals.
    Schramm S; Karothu DP; Lui NM; Commins P; Ahmed E; Catalano L; Li L; Weston J; Moriwaki T; Solntsev KM; Naumov P
    Nat Commun; 2019 Mar; 10(1):997. PubMed ID: 30824701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics.
    Mandal A; Taylor MAD; Weight BM; Koessler ER; Li X; Huo P
    Chem Rev; 2023 Aug; 123(16):9786-9879. PubMed ID: 37552606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions.
    Zhang Y; Nelson T; Tretiak S
    J Chem Phys; 2019 Oct; 151(15):154109. PubMed ID: 31640366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating Molecular Exciton Polaritons Using
    Weight BM; Krauss TD; Huo P
    J Phys Chem Lett; 2023 Jun; 14(25):5901-5913. PubMed ID: 37343178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Cavity Born-Oppenheimer: On Nonadiabatic Coupling and Effective Ground State Hamiltonians in Vibro-Polaritonic Chemistry.
    Fischer EW; Saalfrank P
    J Chem Theory Comput; 2023 Oct; 19(20):7215-7229. PubMed ID: 37793029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory for Cavity-Modified Ground-State Reactivities via Electron-Photon Interactions.
    Mandal A; Taylor MAD; Huo P
    J Phys Chem A; 2023 Aug; 127(32):6830-6841. PubMed ID: 37499090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating New Reactivities Enabled by Polariton Photochemistry.
    Mandal A; Huo P
    J Phys Chem Lett; 2019 Sep; 10(18):5519-5529. PubMed ID: 31475529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium effects of cavity leakage and vibrational dissipation in thermally activated polariton chemistry.
    Du M; Campos-Gonzalez-Angulo JA; Yuen-Zhou J
    J Chem Phys; 2021 Feb; 154(8):084108. PubMed ID: 33639750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the dark photochemistry of 1,3-butadiene via the chemiexcitation of Dewar dioxetane.
    Farahani P; Lundberg M; Lindh R; Roca-Sanjuán D
    Phys Chem Chem Phys; 2015 Jul; 17(28):18653-64. PubMed ID: 26119390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of Photoswitching Kinetics with Strong Light-Matter Coupling in a Cavity.
    Zeng H; Pérez-Sánchez JB; Eckdahl CT; Liu P; Chang WJ; Weiss EA; Kalow JA; Yuen-Zhou J; Stern NP
    J Am Chem Soc; 2023 Sep; 145(36):19655-19661. PubMed ID: 37643086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.