BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37846029)

  • 1. An efficient, scarless, selection-free technology for phage engineering.
    Goren MG; Mahata T; Qimron U
    RNA Biol; 2023 Jan; 20(1):830-835. PubMed ID: 37846029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
    Kiro R; Shitrit D; Qimron U
    RNA Biol; 2014; 11(1):42-4. PubMed ID: 24457913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies.
    Strotskaya A; Savitskaya E; Metlitskaya A; Morozova N; Datsenko KA; Semenova E; Severinov K
    Nucleic Acids Res; 2017 Feb; 45(4):1946-1957. PubMed ID: 28130424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Editing of Phage Genomes - Recombineering-Assisted SpCas9 Modification of Model Coliphages T7, T5, and T3].
    Isaev A; Andriianov A; Znobishcheva E; Zorin E; Morozova N; Severinov K
    Mol Biol (Mosk); 2022; 56(6):883. PubMed ID: 36475474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of Genetically Modified Bacteriophages Using the CRISPR-Cas System.
    Manor M; Qimron U
    Bio Protoc; 2017 Aug; 7(15):. PubMed ID: 28804739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7.
    Grigonyte AM; Harrison C; MacDonald PR; Montero-Blay A; Tridgett M; Duncan J; Sagona AP; Constantinidou C; Jaramillo A; Millard A
    Viruses; 2020 Feb; 12(2):. PubMed ID: 32050613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 9. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3.
    Schroven K; Voet M; Lavigne R; Hendrix H
    Methods Mol Biol; 2024; 2793():113-128. PubMed ID: 38526727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for Bacteriophage T5 Mutagenesis: Expanding the Toolbox for Phage Genome Engineering.
    Ramirez-Chamorro L; Boulanger P; Rossier O
    Front Microbiol; 2021; 12():667332. PubMed ID: 33981295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering.
    Box AM; McGuffie MJ; O'Hara BJ; Seed KD
    J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Šimoliūnienė M; Kazlauskas D; Zajančkauskaitė A; Meškys R; Truncaitė L
    Biochim Biophys Acta Gen Subj; 2021 Oct; 1865(10):129967. PubMed ID: 34324954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriophage-resistant industrial fermentation strains: from the cradle to CRISPR/Cas9.
    Baltz RH
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1003-1006. PubMed ID: 30191429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Multiplex Creation of Escherichia coli Strains Capable of Interfering with Phage Infection Through CRISPR.
    Strotksaya A; Semenova E; Savitskaya E; Severinov K
    Methods Mol Biol; 2015; 1311():147-59. PubMed ID: 25981471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9.
    Tao P; Wu X; Tang WC; Zhu J; Rao V
    ACS Synth Biol; 2017 Oct; 6(10):1952-1961. PubMed ID: 28657724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage.
    Hupfeld M; Trasanidou D; Ramazzini L; Klumpp J; Loessner MJ; Kilcher S
    Nucleic Acids Res; 2018 Jul; 46(13):6920-6933. PubMed ID: 30053228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral recombination systems limit CRISPR-Cas targeting through the generation of escape mutations.
    Hossain AA; McGinn J; Meeske AJ; Modell JW; Marraffini LA
    Cell Host Microbe; 2021 Oct; 29(10):1482-1495.e12. PubMed ID: 34582782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3).
    Liu L; Zhao D; Ye L; Zhan T; Xiong B; Hu M; Bi C; Zhang X
    Microb Cell Fact; 2020 Jul; 19(1):136. PubMed ID: 32620105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Engineering of Therapeutic Phages Using Type III CRISPR-Cas Systems.
    Hill CM; Hatoum-Aslan A
    Methods Mol Biol; 2024; 2734():279-299. PubMed ID: 38066376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.