These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37846197)

  • 21. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration.
    Geng M; Zhang Q; Gu J; Yang J; Du H; Jia Y; Zhou X; He C
    Biomater Sci; 2021 Apr; 9(7):2631-2646. PubMed ID: 33595010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration.
    Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X
    Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO
    Monavari M; Homaeigohar S; Fuentes-Chandía M; Nawaz Q; Monavari M; Venkatraman A; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112470. PubMed ID: 34857258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vitro and In Vivo Evaluation of 3D Printed Poly(Ethylene Glycol) Dimethacrylate-Based Photocurable Hydrogel Platform for Bone Tissue Engineering.
    Unagolla JM; Gaihre B; Jayasuriya AC
    Macromol Biosci; 2024 Apr; 24(4):e2300414. PubMed ID: 38035771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D magnetic nanocomposite scaffolds enhanced the osteogenic capacities of rat bone mesenchymal stem cells in vitro and in a rat calvarial bone defect model by promoting cell adhesion.
    Han L; Guo Y; Jia L; Zhang Q; Sun L; Yang Z; Dai Y; Lou Z; Xia Y
    J Biomed Mater Res A; 2021 Sep; 109(9):1670-1680. PubMed ID: 33876884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Modification of Polylactic Acid Bioscaffold Fabricated via 3D Printing for Craniofacial Bone Tissue Engineering.
    Liu YC; Lo GJ; Shyu VB; Tsai CH; Chen CH; Chen CT
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporation of small extracellular vesicles in PEG/HA-Bio-Oss hydrogel composite scaffold for bone regeneration.
    Zheng W; Zhu Z; Hong J; Wang H; Cui L; Zhai Y; Li J; Wang C; Wang Z; Xu L; Hao Y; Cheng G; Ma S
    Biomed Mater; 2024 Oct; 19(6):. PubMed ID: 39312942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alveolar bone repair of rhesus monkeys by using BMP-2 gene and mesenchymal stem cells loaded three-dimensional printed bioglass scaffold.
    Wang L; Xu W; Chen Y; Wang J
    Sci Rep; 2019 Dec; 9(1):18175. PubMed ID: 31796797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinspired Hydrogel Anchoring 3DP GelMA/HAp Scaffolds Accelerates Bone Reconstruction.
    Pu X; Tong L; Wang X; Liu Q; Chen M; Li X; Lu G; Lan W; Li Q; Liang J; Sun Y; Fan Y; Zhang X
    ACS Appl Mater Interfaces; 2022 May; 14(18):20591-20602. PubMed ID: 35500105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β
    Liu X; Wang Z; Xu C; Guan J; Wei B; Liu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):904-912. PubMed ID: 34308601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D-printed titanium scaffolds loaded with gelatin hydrogel containing strontium-doped silver nanoparticles promote osteoblast differentiation and antibacterial activity for bone tissue engineering.
    Anushikaa R; Ganesh SS; Victoria VSS; Shanmugavadivu A; Lavanya K; Lekhavadhani S; Selvamurugan N
    Biotechnol J; 2024 Aug; 19(8):e2400288. PubMed ID: 39115337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity.
    Xie Y; Sun W; Yan F; Liu H; Deng Z; Cai L
    Int J Nanomedicine; 2019; 14():6019-6033. PubMed ID: 31534334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A
    J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G; Oh S; Seok JM; Park SA; Lee JY
    Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.
    Ansari S; Sarrion P; Hasani-Sadrabadi MM; Aghaloo T; Wu BM; Moshaverinia A
    J Biomed Mater Res A; 2017 Nov; 105(11):2957-2967. PubMed ID: 28639378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.