These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 37846440)
1. Automated Breast Density Assessment in MRI Using Deep Learning and Radiomics: Strategies for Reducing Inter-Observer Variability. Jing X; Wielema M; Monroy-Gonzalez AG; Stams TRG; Mahesh SVK; Oudkerk M; Sijens PE; Dorrius MD; van Ooijen PMA J Magn Reson Imaging; 2024 Jul; 60(1):80-91. PubMed ID: 37846440 [TBL] [Abstract][Full Text] [Related]
2. Editorial for "Automated Breast Density Assessment in MRI Using Deep Learning and Radiomics: Strategies for Reducing Inter-Observer Variability". Khosravi P J Magn Reson Imaging; 2024 Jul; 60(1):92-93. PubMed ID: 37818764 [No Abstract] [Full Text] [Related]
3. Classification of fatty and dense breast parenchyma: comparison of automatic volumetric density measurement and radiologists' classification and their inter-observer variation. Østerås BH; Martinsen AC; Brandal SH; Chaudhry KN; Eben E; Haakenaasen U; Falk RS; Skaane P Acta Radiol; 2016 Oct; 57(10):1178-85. PubMed ID: 26792823 [TBL] [Abstract][Full Text] [Related]
4. Clinical Breast MRI-based Radiomics for Distinguishing Benign and Malignant Lesions: An Analysis of Sequences and Enhanced Phases. Wang G; Guo Q; Shi D; Zhai H; Luo W; Zhang H; Ren Z; Yan G; Ren K J Magn Reson Imaging; 2024 Sep; 60(3):1178-1189. PubMed ID: 38006286 [TBL] [Abstract][Full Text] [Related]
5. Breast MRI Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist. Eskreis-Winkler S; Sutton EJ; D'Alessio D; Gallagher K; Saphier N; Stember J; Martinez DF; Morris EA; Pinker K J Magn Reson Imaging; 2022 Oct; 56(4):1068-1076. PubMed ID: 35167152 [TBL] [Abstract][Full Text] [Related]
6. Inter- and intraradiologist variability in the BI-RADS assessment and breast density categories for screening mammograms. Redondo A; Comas M; Macià F; Ferrer F; Murta-Nascimento C; Maristany MT; Molins E; Sala M; Castells X Br J Radiol; 2012 Nov; 85(1019):1465-70. PubMed ID: 22993385 [TBL] [Abstract][Full Text] [Related]
7. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective. Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980 [TBL] [Abstract][Full Text] [Related]
8. Mammographic density assessment: comparison of radiologists, automated volumetric measurement, and artificial intelligence-based computer-assisted diagnosis. Eom HJ; Cha JH; Choi WJ; Cho SM; Jin K; Kim HH Acta Radiol; 2024 Jul; 65(7):708-715. PubMed ID: 38825883 [TBL] [Abstract][Full Text] [Related]
9. Inter- and intra-observer agreement of BI-RADS-based subjective visual estimation of amount of fibroglandular breast tissue with magnetic resonance imaging: comparison to automated quantitative assessment. Wengert GJ; Helbich TH; Woitek R; Kapetas P; Clauser P; Baltzer PA; Vogl WD; Weber M; Meyer-Baese A; Pinker K Eur Radiol; 2016 Nov; 26(11):3917-3922. PubMed ID: 27108300 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI. Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning for Automated Triaging of 4581 Breast MRI Examinations from the DENSE Trial. Verburg E; van Gils CH; van der Velden BHM; Bakker MF; Pijnappel RM; Veldhuis WB; Gilhuijs KGA Radiology; 2022 Jan; 302(1):29-36. PubMed ID: 34609196 [TBL] [Abstract][Full Text] [Related]
12. Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: a reader performance study. Skaane P; Gullien R; Eben EB; Sandhaug M; Schulz-Wendtland R; Stoeblen F Acta Radiol; 2015 Apr; 56(4):404-12. PubMed ID: 24682405 [TBL] [Abstract][Full Text] [Related]
13. Inter-observer agreement according to three methods of evaluating mammographic density and parenchymal pattern in a case control study: impact on relative risk of breast cancer. Winkel RR; von Euler-Chelpin M; Nielsen M; Diao P; Nielsen MB; Uldall WY; Vejborg I BMC Cancer; 2015 Apr; 15():274. PubMed ID: 25884160 [TBL] [Abstract][Full Text] [Related]
14. A Machine Learning-Based Unenhanced Radiomics Approach to Distinguishing Between Benign and Malignant Breast Lesions Using T2-Weighted and Diffusion-Weighted MRI. Liu Y; Jia X; Zhao J; Peng Y; Yao X; Hu X; Cui J; Chen H; Chen X; Wu J; Hong N; Wang S; Wang Y J Magn Reson Imaging; 2024 Aug; 60(2):600-612. PubMed ID: 37933890 [TBL] [Abstract][Full Text] [Related]
15. Breast density (BD) assessment with digital breast tomosynthesis (DBT): Agreement between Quantra™ and 5th edition BI-RADS Ekpo EU; Mello-Thoms C; Rickard M; Brennan PC; McEntee MF Breast; 2016 Dec; 30():185-190. PubMed ID: 27769015 [TBL] [Abstract][Full Text] [Related]
16. Determination of mammographic breast density using a deep convolutional neural network. Ciritsis A; Rossi C; Vittoria De Martini I; Eberhard M; Marcon M; Becker AS; Berger N; Boss A Br J Radiol; 2019 Jan; 92(1093):20180691. PubMed ID: 30209957 [TBL] [Abstract][Full Text] [Related]
17. Use of BI-RADS-MRI descriptors for differentiation between mucinous carcinoma and fibroadenoma. Igarashi T; Ashida H; Morikawa K; Motohashi K; Fukuda K Eur J Radiol; 2016 Jun; 85(6):1092-8. PubMed ID: 27161057 [TBL] [Abstract][Full Text] [Related]
18. Characterization of renal masses with MRI-based radiomics: assessment of inter-package and inter-observer reproducibility in a prospective pilot study. Al-Mubarak H; Bane O; Gillingham N; Kyriakakos C; Abboud G; Cuevas J; Gonzalez J; Meilika K; Horowitz A; Huang HV; Daza J; Fauveau V; Badani K; Viswanath SE; Taouli B; Lewis S Abdom Radiol (NY); 2024 Oct; 49(10):3464-3475. PubMed ID: 38467854 [TBL] [Abstract][Full Text] [Related]
19. Inter- and intra-observer variability of qualitative visual breast-composition assessment in mammography among Japanese physicians: a first multi-institutional observer performance study in Japan. Koyama Y; Nakashima K; Orihara S; Tsunoda H; Kimura F; Uenaka N; Ban K; Michishita Y; Kanemaki Y; Kurihara A; Tawaraya K; Taguri M; Ishikawa T; Uematsu T Breast Cancer; 2024 Jul; 31(4):671-683. PubMed ID: 38619787 [TBL] [Abstract][Full Text] [Related]
20. Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists. Yu T; Yu R; Liu M; Wang X; Zhang J; Zheng Y; Lv F Eur J Radiol; 2024 Aug; 177():111556. PubMed ID: 38875748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]