These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37846718)

  • 1. [Research Progress of Immune Heterogeneity in Leukemia Microenvironment--Review].
    Li F; Yang FF; Xu YL
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2023 Oct; 31(5):1569-1573. PubMed ID: 37846718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects.
    Jia H; Truica CI; Wang B; Wang Y; Ren X; Harvey HA; Song J; Yang JM
    Drug Resist Updat; 2017 May; 32():1-15. PubMed ID: 29145974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment.
    Isidori A; Salvestrini V; Ciciarello M; Loscocco F; Visani G; Parisi S; Lecciso M; Ocadlikova D; Rossi L; Gabucci E; Clissa C; Curti A
    Expert Rev Hematol; 2014 Dec; 7(6):807-18. PubMed ID: 25227702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer.
    Lazăr DC; Avram MF; Romoșan I; Cornianu M; Tăban S; Goldiș A
    World J Gastroenterol; 2018 Aug; 24(32):3583-3616. PubMed ID: 30166856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer.
    Fathi M; Pustokhina I; Kuznetsov SV; Khayrullin M; Hojjat-Farsangi M; Karpisheh V; Jalili A; Jadidi-Niaragh F
    IUBMB Life; 2021 May; 73(5):726-738. PubMed ID: 33686787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune Dysfunctions and Immune-Based Therapeutic Interventions in Chronic Lymphocytic Leukemia.
    Griggio V; Perutelli F; Salvetti C; Boccellato E; Boccadoro M; Vitale C; Coscia M
    Front Immunol; 2020; 11():594556. PubMed ID: 33312177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antileukemia and antitumor effects of the graft-versus-host disease: a new immunovirological approach.
    Sinkovics JG
    Acta Microbiol Immunol Hung; 2010 Dec; 57(4):253-347. PubMed ID: 21183421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity.
    Abe S; Nagata H; Crosby EJ; Inoue Y; Kaneko K; Liu CX; Yang X; Wang T; Acharya CR; Agarwal P; Snyder J; Gwin W; Morse MA; Zhong P; Lyerly HK; Osada T
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35039461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options.
    Kabacaoglu D; Ciecielski KJ; Ruess DA; Algül H
    Front Immunol; 2018; 9():1878. PubMed ID: 30158932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia.
    Knaus HA; Kanakry CG; Luznik L; Gojo I
    Curr Drug Targets; 2017; 18(3):315-331. PubMed ID: 25981611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy.
    Yang J; Zhang C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1612. PubMed ID: 32114718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies.
    Waibl Polania J; Lerner EC; Wilkinson DS; Hoyt-Miggelbrink A; Fecci PE
    Front Immunol; 2021; 12():777073. PubMed ID: 34868044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotherapy of hepatocellular carcinoma: recent progress and new strategy.
    Li J; Xuan S; Dong P; Xiang Z; Gao C; Li M; Huang L; Wu J
    Front Immunol; 2023; 14():1192506. PubMed ID: 37234162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research Progress in Immunotherapy of Gliomas.
    Duan ZH; Wei ZL
    J Integr Neurosci; 2023 Aug; 22(5):118. PubMed ID: 37735122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunotherapy in pancreatic cancer: New hope or mission impossible?
    Jiang J; Zhou H; Ni C; Hu X; Mou Y; Huang D; Yang L
    Cancer Lett; 2019 Mar; 445():57-64. PubMed ID: 30641107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immunosuppressive Microenvironment.
    Kaweme NM; Zhou F
    Front Immunol; 2021; 12():683381. PubMed ID: 34220833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness.
    Barnestein R; Galland L; Kalfeist L; Ghiringhelli F; Ladoire S; Limagne E
    Oncoimmunology; 2022; 11(1):2120676. PubMed ID: 36117524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds.
    Asija S; Chatterjee A; Yadav S; Chekuri G; Karulkar A; Jaiswal AK; Goda JS; Purwar R
    Int Rev Immunol; 2022; 41(6):582-605. PubMed ID: 35938932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.