These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37846794)

  • 1. The impact of spatially heterogeneous chemical doping on the electronic properties of CdSe quantum dots: insights from
    Deswal P; Samanta K; Ghosh D
    Nanoscale; 2023 Nov; 15(42):17055-17067. PubMed ID: 37846794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study.
    Malik P; Thareja R; Singh J; Kakkar R
    J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Copper Doping on Electronic Structure and Optical Absorption of Cd
    Zhao F; Hu S; Xu C; Xiao H; Zhou X; Zu X; Peng S
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal synthesis of water-soluble Mn- and Cu-doped CdSe quantum dots with multi-shell structures and their photoluminescence properties.
    Nishimura H; Enomoto K; Pu YJ; Kim D
    RSC Adv; 2022 Feb; 12(10):6255-6264. PubMed ID: 35424533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Ag doping on the electronic and optical properties of CdSe quantum dots.
    Zhao FA; Xiao HY; Bai XM; Zu XT
    Phys Chem Chem Phys; 2019 Aug; 21(29):16108-16119. PubMed ID: 31290876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe.
    Wright JT; Forsythe K; Hutchins J; Meulenberg RW
    Nanoscale; 2016 Apr; 8(17):9417-24. PubMed ID: 27093918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Quantized" Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters.
    Santiago-González B; Monguzzi A; Pinchetti V; Casu A; Prato M; Lorenzi R; Campione M; Chiodini N; Santambrogio C; Meinardi F; Manna L; Brovelli S
    ACS Nano; 2017 Jun; 11(6):6233-6242. PubMed ID: 28485979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doping MAPbBr
    Baronnier J; Houel J; Dujardin C; Kulzer F; Mahler B
    Nanoscale; 2022 Apr; 14(15):5769-5781. PubMed ID: 35352077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable White Fluorescent Copper Gallium Sulfide Quantum Dots Enabled by Mn Doping.
    Jo DY; Kim D; Kim JH; Chae H; Seo HJ; Do YR; Yang H
    ACS Appl Mater Interfaces; 2016 May; 8(19):12291-7. PubMed ID: 27120773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand Induced Spectral Changes in CdSe Quantum Dots.
    Azpiroz JM; De Angelis F
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19736-45. PubMed ID: 26289823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emission transformation in CdSe/ZnS quantum dots conjugated to biomolecules.
    Torchynska TV; Polupan G; Vega Macotela LG
    J Photochem Photobiol B; 2017 May; 170():309-313. PubMed ID: 28477576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag-In-S quantum dots.
    Raevskaya A; Rozovik O; Novikova A; Selyshchev O; Stroyuk O; Dzhagan V; Goryacheva I; Gaponik N; Zahn DRT; Eychmüller A
    RSC Adv; 2018 Feb; 8(14):7550-7557. PubMed ID: 35539102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots.
    Ca NX; Van HT; Do PV; Thanh LD; Tan PM; Truong NX; Oanh VTK; Binh NT; Hien NT
    RSC Adv; 2020 Jul; 10(43):25618-25628. PubMed ID: 35518601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandgap- and Radial-Position-Dependent Mn-Doped Zn-Cu-In-S/ZnS Core/Shell Nanocrystals.
    Peng L; Huang K; Zhang Z; Zhang Y; Shi Z; Xie R; Yang W
    Chemphyschem; 2016 Mar; 17(5):752-8. PubMed ID: 26419419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu-doped quantum dots: a new class of near-infrared emitting fluorophores for bioanalysis and bioimaging.
    Li C; Wu P
    Luminescence; 2019 Dec; 34(8):782-789. PubMed ID: 31297953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme.
    Kim HJ; Jo JH; Yoon SY; Jo DY; Kim HS; Park B; Yang H
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.